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Wray-Agarwal (WA) Model

Beginning with Wilcox’s 2006 k-o model:
Dk 0 [ kok o\ _ .
5= 55 (o) (55) 4o

Dw 0 k ow Q) ou\’ 0,4 0k 0w
— Bw? +

e~ ay\“aay) x5 wdydy

With R defined as k/w, the material derivative of R can be obtained as:

DR 1Dk k Dw

Dt  wDt w?Dt
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To finish the closure one additional equation is needed. With Bradshaw’s relation, the

system is complete:
ou

—u'v'| = v, E =a,k

Slide 2



Washington

University in St Louis
Wray-Agarwal (WA) Model (Contd.) R AboE Setten

After substitution the R transport equation can be obtained as:

NN i
DR_a RaR +CR6u+C R OR ay ) y
Dt 9y OR dy oy

‘63/ ay 7 au|?

C, term is identical to the destruction term in one-equation k- models
« Shown to have free stream sensitivity

» Does well in adverse pressure gradient flows

C; term is identical to the destruction term in one-equation k-¢ models
» Poor near wall behavior

» Accurate in free shear flows

Design a switch to control the C,/C; behavior.
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as dS
OR Ou;R R OR 0S 0x; 0x;
T + a;j [(URR +v) —] + (4RS +f1C2ka) 56_6_ — (1 = f1)CakeR? %
vr = fuR Cire = 0.0833 Cixe = 0.1127
3 R C1 = f1(Cike — Cige) + Crpe
fo = % == Oy = 0.72 0y, = 1.0
x®+Cy v or = f1(Okw — Oke) + O
k=041
f1 = tanh(arg?) Cik Cik
! ! Cokw = Kw‘l'o-kw C2k£:Kg+ ke
S= |25;S;, Sy = 2 a-l_a CU = 0.09
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» Desire a switch that smoothly transitions from 1 near solid boundaries to zero at the
boundary layer edge. Analogous to the SST k- model

2 dvVRS
arg,; = min( “bR (R+V) ) orarg: = Y
o Sk2d?’\ v 1+ d max(VRS,1.5) 2
20v
: ] v+R 1n?
» Wall-Distance Free WA Model: arg,= R
13

_viS =5 = w - W W= (% %%
k—\/c_u,w—\/c_u,n—Smax(l,hD,W— ZI/I/lWU,WU—2<axj axi>

arg, is one in the near one in the viscous sublayer, equal to one in the log layer, decays
approaching the outer edge of the boundary layer.

« To ensure smoothness and boundedness, arg, is wrapped in hyperbolic tangent:
f1 = tanh(argy)
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WA-QCR: incorporation of Quadratic Constitutive Relation in WA model (Spalart)
Compressibility Correction (Wilcox, Sarkar)

DR _
- 95 as
B*fu . Bfu _ i OR EG_RE _ 2 <ax 9 ; >
(a1 t o T aal) RS"‘ay(URRa )+f162ka)56 ;9% (1= f1)Coe R\ —
B fu , Bf
(as + S @, ) = —CeompF (MRS
* * * * . X 2 V2k
B = Bo—BoF(Mp), B = Boll + & F(My), Sarkar: §* = 1, F(M,) = Mg, M, = Pl

. « 3 1
Wilcox: §" =2, My =, F(M,) = [MZ — MZH(M; — M)
High Temperature Correction (Abdol-Hamid)

Ty 3 k
0.041+F(My)

T, = (“RR)l/Z'V?' Ve = 0.09 |1+ ve = f,R(1 +18.0 X T,%)

Rotation & Curvature (RC) Correction (Spalart-Shur)
Rough Wall Flows
WA-y Transition Model
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a5 3
6R+6ujR_ 0 (GoR + )aR L CRS 4 FC dR S (1 f)C R* [ 0x; 0x;
at ax] - ax] O-R v ax] 1 fl 2kw FDZESSax] ax] fl 2ke FL%ES SZ

Fpgs = max (lRANS, 1 ), lRans = \/é lLes = CpesBpes, Apps= max(Ly, Ay, 4;)

lLES

* The calibrated value of C,.; = 0.41 using the DIT test case.

* WA-IDDES model redefines the characteristic length scale ratio F,.; in WA-DES model as F 5

* |DDES equations and constants are the same as in the SA-IDDES and SST-IDDES models.
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l ~ ~
Fippps = max ( rvs ) luys = fa(1 + fo)lrans + (1 — fa)lues, les = Coeslippes

Ajppes= min{max|C,,d, C,,Apgs, Aywn], Apes}

Ay is wall normal grid spacing

( vt
3 = max(f,; — 1,0 Tat = i .
fa =max(1 — fae, f5) Je 2 —11(.](:?922 ' )er> 0 ( ou; i
far = 1= tanh[(Cuar)®] £, = { e a2 rEdimax ) | Xy j (a_xl) 10750
fs = min(Ze—‘Boc2 1) 2¢770% ifa <0 ¢ 77
, N 4
o = 025 . d/max(Ax, AytAZ) er = 1.0 ma-’)zc(ftijgcl) Ty = vV
{ft = tanh[(c:“14¢)°] (1 5 271/2
Cdl =4 fl = tanh[(clzrdl)lo] k2d?max < Zi,j <a_1;l> ’ 10-10%
j
\ \
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Implemented in OpenFOAM

UDF for Fluent

Being implemented in NASA FUN3D by Missouri University of Science & Technology
Code modules available

40+ benchmark cases computed

Contact Ramesh Agarwal; Email: rka@wustl.edu, Phone: 314-935-6091
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Turbulence Model Validation Cases and Grids

. Basic Cases:

2DZP: 2D Zero pressure gradient flat plate Each case has a family of grids,

« 2DMLL: 2D Mixing Layer boundary conditions, and
 2DANW: 2D Airfoil near-wake expected results for at least the
 2DN00: 2D NACA 0012 airfoil SA and SST models.

o ASJ: Axisymmetric Subsonic jet

o AHSJ: Axisymmetric Hot subsonic jet

o ANSJ: Axisymmetric Near-sonic jet
JASBL: Axisymmetric Separated boundary layer

JATB: Axisymmetric Transonic Bump

. Extended Cases:
o _2DZPH: 2D Zero pressure gradient high Mach number flat plate
JZDBFS: 2D Backward facing ste
2DN44: 2D NACA 4412 airfoil trailing edge separation
JZDCC: 2D Convex curvature boundary layer
DWMH: 2D NASA wall-mounted hump separated flow
JiSWBLI: Axisymmetric Shock Wave Boundary Layer Interaction near M=7

o ACSSJ: Axisymmetric Cold Supersonic Jet

o _AHSSJ: Axisymmetric Hot Supersonic Jet
3DSSD: 3D Supersonic square duct
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University in St.Louis
SCHOOL OF ENGINEERING
& APPLIED SCIENCE

The NPARC Alliance is a partnership between the MASA Glenn Research Center (GRC) and the Amcld Engineering Development
Center (AEDC) dedicated to the establishment of a naticnal, applications-criented computaticnal fluid dynamics (CFD) capability

centered on the Wind-US computer program. The MPARC Alliance was established in 1993

Mach Description M
Sod's Shock Tube 0.80

Incompressible Dnven Cavity 0.8
Blasius Incompressible Laminar Flat Plate J
Dnver-Seegmiller Incompressible Backward-Facing Step

LELE &

Fraser Subsonic Conical Diffuser ?2;
Incompressible, Buice Axisymmetric Diffuser 182

MNLR Airfoil with Flap 500
Incompressible, Turbulent Flat Plate M

0.2 Laminar Flow over a Circular Cylinder 599
. Ejector Nozzle 2' 38
A 4! Low-Subsonic S-Duct 2'44
030  Steady, Inviscid Flow in a Converging-Diverging Verfication (CDV) Nozzle 2' &0

0.30 Subsonic Annular Duct

2.5
0.40  Square Jet Injection 8’
046  Sajben Transonic Converging-Diverging Diffuser

5.00
7.00
Broad CFD cases, not all are 15.00
applicable to turbulence
modeling.

RAE 2822 Transonic Airfoil

MADIC 2D Axisymmetric CD Boattail Mozzle

MADIC 3D CD Boattail Nozzle

Transonic, ONERA M& Wing

Acoustic Reference Nozzle with Mach 0.97, Unheated Jet Flow
Mormal shock at Mach 1.3

Hydrogen-Air Combustion in a Channel

Mach 2.0 Flow over a 15-Degree Wedge

Seiner Mozzle with Mach 2.0, Heated Jet Flow
Supersonic Axisymmetrc "submerged” Jet Flow
Conical shock on a 10 degree cone at Mach 2.35
Burrows and Kurkov Supersonic Mixing/Combustion
Oblique shock on a 15 degree wedge at Mach 2.5
Prandtl-Meyer 15 Degree Expansion Comer at Mach 2.5
Mach 4 5 Flow over a Flat Plate

Mach 5.0 Shock Boundary Layer Interaction

Mach 7, Laminar 15-degree Ramp

Hypersonic Cylinder

Slide 11



Washington

University in St.Louis
Free Shear Layer Spreading Rates R RbpLitD SCENCE
Flow WA SA SST k-w Experiment
0.32-0.40 [Fage
Far Wake 0.305 0.341 0.258 & Falkner]
0.10-0.11
Plane Jet 0.108 0.157 0.112 [Bradbury]
0.086-0.096
[Wygnanski &
Round Jet 0.119 0.248 0.127 Fiedler]
0.096-0.110
[Witze &
Radial Jet 0.093 0.166 Dwyer]
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Re, = 36,000, M, = 0.128, Reattachment point varies from x/H = 6.16 to 6.36

Experiment reattachment at x/H = 6.26+0.1

0.1 0.004
0.05 ) J
o 0.003
(o] w
0 Z 7 Me——ll0 0 0 5 0 o o
/J 0.002 o U
&o.05 5 e
0.1 / 0.001 bd //
o /
-0.15 O Exp.Data
X 0 WA —
G O Exp. Data
-0.2 e — o e ST
— WA — A
e §ST -0.001 5]
-0.25 —
—SA
-0.3 T -0.002
5 0 5 10 10 15 20 25

30
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2D Asymmetric Diffuser
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Re, = 20,000, M, = 0.06, Opening angle a=10°, Separation region x/H = 7.03 to 30.97

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

-0.001

-0.002

Skin-friction along bottom wall

x/H

O Exp. Data
e\ A\
SST
—SA -]
o 0.0
N e,
-20 -10 0 10 20 30 40 50 60

70

0.007

0.006

0.005

0.004

0.003

0.002

0.001

Skin-friction along top wall
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Re. = 936,000, M = 0.1, Surface Pressure Coefficient

1 | -1.0
O Exp. Data

-0.8 08

: e \\ A
06 SST k-w 0.6

—SA
0.4 04 + exp.Cp
& I} = \\VA-DES
-0.2 -0.2 WA
SATIT LT e SA

15 2.0

1\
\\ \\ \\
\\\\\\\\ 1IN} \\ \l Wy
\\ \\\‘l \l \\‘.\ \\H
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Re. = 936,000, Mref = 0.1, Surface skin friction coefficient

0.008 0.008
0.006 ’% 0.006 w
0.004 < \ 0.004
+ exp.Cf
5 0.002 - f/_ 5 0002 ——WA-DES
WA
0 V=
O Exp. Data 0.000 SA
-0.002 |- ST ke 000
-0.004 |
-0.5 0 0.5 yc 1 1.5 2 0004
05 0.0 05 10 15 2.0

xlc

Experiment reattachment at x/c = 1.10£0.03
All models reattach in the range of x/c = 1.26-1.29 except WA-DES (x/c = 1.10)
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Re. = 1.52x10°8, M, = 0.09, o = 13.9°, Separation point varies from x/c = 0.6 t0 0.7

80 20
-15
10

O exp. Cp 05 % - m] nnj, O exp.Cp

—WADES & 00 o WA-DES

= S WA
WA 05

—SA — SA
10
15
20 20

0.0 0.2 04 06 08 10 06 0.7 0.7 038 08 09 09 10 10
xc x/c
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Boundary La.yer & APPLIED SCIENCE
Re, = 2x10% M, = 0.08812
Surface pressure coefficient Surface skin friction coefficient

0.7 | 0.0035 |
—A ﬁ:::s:d:n\
/_ A
06 | T WA o — 0.003 —wA -
ST 0/ \ ssT
O Exp. Data 00 O Exp.Data
§0

0.0025

\ /

0.3 // N \\ 7
o

cp
Cp

0 P

0 X —

/ —0
0 ===——0—1— 0

-0.0005
0.6 0.4 0.2 0 0.2 0.4 0.6
0.1 x[m]
0.6 0.4 0.2 0 0.2 0.4 0.6
[m]
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» Re =10,595 based on hill height h and bulk velocity U, at the crest of first hill.
Skin friction coefficient Cp distribution
7.00E-01
6.00E-01
5.00E-01
4.00E-01
O 3.00€-01 O L&
—WA-IDDES S 2.00E-01 ——WA - IDDES
o \\A-DES 1.00E-01 g e\ A-DES
0.00E+00 &
_iA -1.00E-01 WA
| -2.00E-01 — G
-0.01 -3.00E-01
00 = 20 45 &0 s 20 0.0 1.5 3.0 4.5 6.0 7.5 9.0
x/h x/h
3
- 2 <] exp.
= v - WA:DES
1 WA
. _
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- M =0.6, Re =2,600,000 at s/D, = -0.5 (Plane A)

* The Aerodynamic Interface Plane (AIP), where the turbine
face is located, is at s/D, =5.73 (Plane E)

Plane A

Plane E
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NASA Glenn S-Duct

T e rr————— —r " N —
a ¢ =10° —’
0.4 |- ‘ -
:3- oL TEET e e S ]
0.0 —_ sceparated flow region A
]
E B D g
-0.2 o | Ad s il Pl e
0 5
s/d
O Exp. 90Deg
e \\/A-DES
WA
e SA

0.1

sID,
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0.6
05
04
a 03 O Exp. 10Deg
U .
e \\VA-DES
02 WA
®)
e SA
0.1
0
0 1 2 3 4 5
SiD,
0.7

O Exp. 170Deg
—— WA-DES
WA
— A

siD,



Axisymmetric Transonic Bump
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Freestream Mach number M = 0.875, Reynolds number Re .=2,763,000

Separation region varies from x/c =0.7to 1.1

Separation

Reattachment

Cp

0.8

0.7

0.6

-0.5

04

0.3

0.2

0.1

0.0

0.1

0.2

0.4

Experiment WA-DES
0.7 0.696 0.571
1.1 1.106 0.6

0.6

0.8

1.0
xlc

% Error

WA

0.817

1.123

12

% Error

16.714

2.091

SA

0.688

1.160

1.6

% Error

1.714

5.455

+ Exp.Cp
e \WA-DES
WA
e SA
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2D Slot Nozzle Ejector
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“Run5”, P, = 31.71 Psia, T,.,,. = 648 R, Mixing Section Throat = 1.25”, M, ;1. = 0.0787

u_I_I_L__L——.l———L——J
® — _ — —
-
\ Mixing
Section Wall
Nozzle
Discharee

Static Pressure (Pa)

-3000

-8000

-13000

-18000

0.1 0.2 0.3 0.4 0.5 0.6

Distance from Nozzle Discharge (m)

—_— WA
350 SST k-w
300
250

Velocity (m/s)
-
g

-0.02 -0.015 -0.01

-0.005 0
Distance from Centerline (m)

0.005 0.01 0.015 0.02
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Experiment of Davis and Gessner, M = 3.9, Rep= 508,000, D = 25.4mm, x/D =50

Diagonal Cut »/Dr = 40
Davis & Gessner Supersonic Square Duct Case
M, _=3.9, Re =508,000 (D=channel height & width)
T 'takeh tobe 520 R
0.6F 1
C Symmetry
o5k 0.9
[ 0.8
04
. (looking upstream) 0.7
0.3F
| Adiabatic solid wall Symmetry 00— —— — 8 . WA
[=] o
= 02F o 05 WA-QCR
g H % Exp-Di
0.1F 0.4 ¥p-Luag
oF 0.3
: Adiabatic solid wall
01F 0.2
- only 1/4 of channel computed 01
-0.2 - (makes use of symmetry BCs)
L TN TR N NN AN T [ SN T SN TR W N R T T |
w a
02 o YI'DOE 04 a8 a 01 02 03 04 05 06 07 085 089 1

wucl

Vv + w?fu,,
1.000e-02

=0.0075

T

0.005

T

=0.0025

E0.000@-0-00
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The main characteristic of system rotation and large curvature flows is the additional
turbulent production experienced in these flows.

For this reason, corrections to turbulence models aim to increase the production
term or decrease the destruction term in the transport equations.

The Spalart-Shur correction multiplies the production term by a rotation function
fra (7)) = (1 + 1) 12+rr* [1—crztan™(cr2P)] —Cpq, 77= =z
Modification of coefficients in Spalart-Shur RC correction using UQ:

Zhang and Yang RC correction

Durbin-Arrola correction
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e 2D Curved Duct

e 2D U-turn Duct

e 2D Rotating Channel

« 2D Rotating Backward-facing Step
 Rotating Cavity — Radial Inflow
 Rotating Cavity — Axial Inflow
o Serpentine Channel

 Rotating Serpentine Channel

» Rotor-Stator Cavity

* Hydrocyclone

o Supersonic Jet in Crossflow
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Geometry and Input

« The geometry is 126 X 20 with a curvature ratio R, /6 = 2
based on the channel half-width &.

« Reynolds number: Re = 26U, /v = 5600

 Rotation number: R, = 26Q/U, = 0.32

Station 1 Station 2
Qurer wall
Inner wall
U-bend 1 Station 3
Station 6 Station 5
Outer wall
Inner wall
Station 5 Station 4
Station 7 U-bend 2
Station 8 Station 9
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Mean Velocity Profile

(a) station 1,5 and 9 (b) Station 2,6
0.8 - 0.9 -

o6

Ufub

0a 4 [f ——S5T-RC

—\WA-RC

—55T-Arolla

0.2 A
[

—Wa-Arolla

—WA-RC-Modified Coefficients

(] 0z o4 s 0B 1 12 14

(c) station 3,7
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Rotating Serpentine Channel

Mean Velocity Profile

(a) Station 1

ufub

ufub

[:R:]

0.8

o7

0.6

o5

0.4

0.3

[+¥3

o1

1]

—WA-RC
—55T-Arolla

—WA-Arclla

< DNS

—WA-RC-Modified Coefficients

University in St.Louis
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(b) station 2

T
1] 0.2

T
o4

T
0.6

T T
0.8 1
Y

[c) station 3
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WA-Rough e St

» Follows the procedure of the SA-Rough model.

dpow = d + 0.03k;

x> R ks

=—7, :—-|—C .
x3+C) X=y Ty

Ju
« Wall boundary condition for R becomes:

OR R

on  duew

o To further increase the eddy-viscosity near the wall

1
C = Cope | ————
( 2kw)r 2kw 14 Crzks

dnew
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NREL’s S809 Airfoil commonly used in HAWT

Re,= 1x10°, U =128 m/s,a =0, 2, 4; 6, 8, 10; 12°
Roughness pattern was developed using a molded insect
pattern taken from a field wind turbine. k/c= 0.0019

14

: /

- 1.4
) / gy | O Experiment[10]
o G g00 1217 ——SA-rough
08 o L —WA-rough
- / o SST k-w-rough
0.6 /’O“O o o

0.8
o ©
% o © //e/ ®oo0o0
04 SA 0.6
SST k-w /
02 - O Experiment[9] 0.4

< Experiment[10]
0 I ! ! T 1
0 5 10 15 20 25 02
a

o |
~
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R 25\

apR_l_apujR_ d s )aR £ voC.RS + c dR 65R+Pum 01)(1 c 8x}
ot ' o, —axj (1 + oppr ox, YPL1 Yph Zk‘”axjaxjs g —max(y,0.1)(1 = f1)pCaxe S

dpy Opwyy 0 s Iy
dt + 0x; ij pt Bx + FlengenPSY(L = V) Fonset — PCa2 Y Frurp (Cea¥ — 1)

Yy = intermittency parameter, Pplm ensure proper R generation for very low Tu values

F,..ce¢ triggers the intermittency production, it is a function of R4, Re,,, and Reg,.

\F\E 100 |,d
03 W

Pressure gradient parameter: Ay, = —7.57 - 103 Z; D 1 0.0128

Local Turbulencelntensity: Tu; = min| 100 w~distance from wall

Rey, correlation: Reg. = 100.0 + 1000.0exp[—1.0 * Tu;, * Fp(]
where F is a correlation function of Ay,

Slide 32



£ Washington

University in St.Louis
WA-y Transition Model R AreiEp SCINCE
» Three zero pressure gradient flat plate cases : T3A, T3B, T3A-

3
-ﬂ

13.3 1.8e-5 9e+5
TSB 9 4 6 5 100 1.8e-5  1.57e+6
198 0874 872 1.2 1865  3.3e+6
pot o paoe X Experiment
0.008 0.008 p-605 = SST-Transition
0.004 —\/A-Transition
0.006 0.006
y .._ « 0.003
@) ®) S
0.004 0.004
0.002
0.002 0.002 | oot
0 0 o
-1E+5 1E+5 3E+5 5E+5 -3E+5 2E+5 7E+5 -5E+5 5E+5 2E+6 3E+6
Rex Rex Rex
T3A T3B T3A-
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A new one-equation turbulence model has been developed to have desirable
characteristics of one-equation k-o and one equation k- models.

The new one-equation WA model has been used to simulate a number of wide-
ranging canonical turbulent flow cases.

The behavior of the WA model is very similar to the two-equation SST k- model.

A clear advantage of the WA model’s predictive capability over the SA model has
been shown for a number of cases from subsonic to transonic to hypersonic wall
bounded flows with small regions of separation and subsonic/supersonic free shear
layer flows.

Spalart-Shur R/C correction has been implemented and verified for all three models.

Surface roughness corrections have been implemented and verified for all three
models.

The DES and IDDES versions of WA model have been developed which show
Improvement in accuracy over the WA model.
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