Perspectives on Reynolds Stress Modeling Part I: General Approach

Umich/NASA Symposium on Advances in Turbulence Modeling

Bernhard Eisfeld, Tobias Knopp 11 July 2017

- Introduction
- Reynolds Stress Modeling
- Flow Physics
- Modeling Perspectives

Introduction

- Reynolds Stress Modeling
- Flow Physics
- Modeling Perspectives

Introduction

Why RANS?

- Aerodynamic design/optimization
 short response times required
- RANS (EVM) based CFD very successful

Why RSM?

- "Virtual product"
 - → CFD at off-design conditions
 - ➔ Lack of accuracy
- Representation of more complex flow physics required
 - → RSM naturally provides opportunities

Virtual product

Introduction

Strategy

Physics-based modeling

- General approach for shear flows → now
- APG boundary layers → presentation by Tobias Knopp

- Introduction
- Reynolds Stress Modeling
- Flow Physics
- Modeling Perspectives

Transport equation

Incompressible formulation

$$\frac{\partial \overline{R}_{ij}}{\partial t} + \overline{U}_k \frac{\partial \overline{R}_{ij}}{\partial x_k} = P_{ij} + \Pi_{ij} - \varepsilon_{ij} + D_{ij}$$

Production

$$P_{ij} = -\overline{R}_{ik} \frac{\partial \overline{U}_j}{\partial x_k} - \overline{R}_{jk} \frac{\partial \overline{U}_i}{\partial x_k}$$

Exact, no modeling involved

- Dissipation ε_{ij}
 - High Re → isotropic
 - ϵ from length-scale equation
 - Anisotropy effects near walls → e.g. Jakirlic
- Diffusion D_{ij}
 - Gradient driven modeling
 - Minor influence on overall performance

Pressure-strain correlation Π_{ij}

- Traceless (incompressible)
 - ➔ no contribution to k-budget
 - \rightarrow re-distribution of Reynolds stresses

Rotta's analysis (1951)

$$\Pi_{ij} = \Pi^{(s)}_{ij} + \Pi^{(r)}_{ij} + \Pi^{(b)}_{ij}$$

- Slow term
 - $\Pi_{ii}^{(s)}$ Return to isotropy (independent of mean flow)
 - \rightarrow (non-linear) function of all Reynolds stress anisotropies b_{kl}
- Rapid term

$$\Pi_{ij}^{(r)} = M_{ijkl} \frac{\partial \overline{U}_k}{\partial x_l} \quad \text{Influence of mean flow}$$

• Influence of boundaries

 $\Pi_{ii}^{(b)}$ Wall-reflexion terms (slow + rapid)

Rapid-term modeling

- M_{ijkl} = function of all Reynolds stress anisotropies b_{mn}
- Constraints, e.g. symmetry (Rotta)
 - ➔ reduction of terms/coefficients

Approaches

- Standard
 - M_{ijkl} linear in b_{mn} (e.g. LRR)
- Non-linear extension
 - M_{ijkl} = power series in b_{mn}
 - ➔ More degrees of freedom
 - Opportunities
 - Additional physics (realizability, two-component limit)
 - Concerns
 - Rapid Distortion Theory
 - Numerics

Calibration of RSM

- Boundary layer theory
 - → Turbulent equilibrium (Rotta/Hinze)

 $P_{ij} - \varepsilon_{ij} + \Pi_{ij} = 0$ \rightarrow trace $P^{(k)} = \varepsilon$ (two-equation models)

- RSM: 3 equations for 3 coefficients = f(b_{mn})
 - Independent of velocity profile
 - Shear stress anisotropy by Bradshaw hypothesis
 → in boundary layers |b_{xy}| = 0.15
 - Normal stress ratios by rule of thumb, e.g. Wilcox 4:2:3

Why is the Bradshaw hypothesis valid?

- Introduction
- Reynolds Stress Modeling
- Flow Physics
- Modeling Perspectives

Flow Physics

Theoretical considerations

• Turbulent equilibrium

 $P_{ij} - \varepsilon_{ij} + \Pi_{ij} = 0$

• Self-similarity of U and R_{xy} + isotropic dissipation (high Re)

→ $P_{ij}, \varepsilon_{ij}, \Pi_{ij}, P^{(k)}, \varepsilon$ Self-similar with identical profile function

- Scaling arguments for Π_{ij}
 - Slow term

$$\Pi_{ij}^{(s)} \propto \varepsilon F_{ij}^{(s)}(b_{mn}) \qquad \Rightarrow \qquad F_{ij}^{(s)}(b_{mn}) = const. \qquad \Rightarrow \qquad b_{mn} = const.$$

• Rapid term \rightarrow consistent with $b_{mn} = const.$

Flow physics principle Boundary layer equations (turb. equilibrium) + self-similarity/self-preservation constant Reynolds stress anisotropy

- Applies to various shear flows
- Bradshaw hypothesis is special case

→ Is the theory correct?

0.08

0.07

0.06

0.05

0

Reynolds Stress Anisotropy

Experimental confirmation: Plane jet

• Indicator function:

- All β_{ij} = const.
 → identical profiles
 - ➔ constant anisotropy

Exp. data confirm theory

B. Eisfeld: Reynolds Stress Anisotropy in Self-Preserving Turbulent Shear Flows, DLR-IB-AS-BS-2017-106

Gutmark & Wygnanski (1976)

Reynolds Stress Anisotropy

Experimental confirmation: Axisymmetric jet

- Region of constant indicator function
 - → Exp. data confirm theory

B. Eisfeld:Reynolds Stress Anisotropy inSelf-Preserving Turbulent Shear Flows,DLR-IB-AS-BS-2017-106

Reynolds Stress Anisotropy

Experimental confirmation: Plane mixing layer

Flow Physics

Reynolds stress anisotropy

Provided by indicator function in constant region

 $b_{ij} = \frac{\beta_{ij}}{\beta_{kk}} - \frac{1}{3}\delta_{ij}$

• Shear stress anisotropy (estimates)

Flow	b _{xy}
Boundary layer	0.150
Plane jet	0.147
Axisym. jet	0.131
Mixing layer	0.164±0.012

- Boundary layer ≠ mixing layer → Re-attachment delayed ٠

Calibration value Similar \rightarrow spreading o.k. Smaller \rightarrow R_{xv} overestimated (spreading) Larger $\rightarrow R_{xv}$ underestimated

- Plane jet \neq axisymmetric jet \rightarrow "round jet/plane jet anomaly"

- Introduction
- Reynolds Stress Modeling
- Flow Physics
- Modeling Perspectives

Mismatch of R_{xy}

- Scaling approach
 - Modify k and keep anisotropy (boundary layer calibration)
 - ➔ Modify length-scale determining equation
- Alternative approach (experimental observation)
 - Modify anisotropy and keep k (length-scale)
 = change orientation of principle axes
 - → Consistent with RSM technology
 - ➔ Adapt model calibration
- Combination required?

Note: Self-adaptation of model → "zonal" approach

Scaling

Example

- Baseline = SSG/LRR- ω
- <u>Rough</u> recalibration of SSG-part for mixing layer (Delville et al. data)
- ➔ get R_{ij} right at most downstream position

Note: for demonstration only

Example

- Application to separated flows
 - → Separation length reduced (for demonstration only!)

Half-jet mixing layer ≈ backward facing step → model of reattachment

Requirements for future improvement

- Reliable anisotropy data for free shear flows and boundary layers
 - Highly accurate experiments
 - DNS
 - Requirement for self-preservation
 - High enough Re
 - Downstream development documented
- Sensors for self-adaptation
 - e.g. SAS-related?
 - Application of machine-learning methods
 - Requirements
 - Reliability
 - Suitability for RANS-based CFD
- Model analysis
 - Calibration
 - Interaction of Reynolds stress anisotropy and length-scale equation
- Improvement for APG boundary layers → presentation by Tobias Knopp

Joint effort required

