Reynolds Stress Closure for Nonequilibrium Effects in Turbulent Flows

Peter Hamlington and Adam Jirasek

Department of Mechanical Engineering, University of Colorado, Boulder, CO

Andrew J. Lofthouse

High Performance Computing Research Center, U.S. Air Force Academy, CO

Motivation: Wind Farm Layout Optimization

Adjoint optimization of wind-farm layout using mixing length RANS model → How do we account for dynamically varying winds and control?

Adjoint optimization (remove recirculation) in supersonic flow using SST k- ω \rightarrow How do we model thrust vectoring, shock-turbulence interactions, etc.?

Challenge: Nonequilibrium Flow Effects

- Many commonly-used RANS models are inaccurate in complex flows, which will pose contin issues as RANS is used for optimization, uncertainty quantification, reduced order modeling etc.
- Nonequilibrium: Large variations in flow quantities relative to straining time scale (~1/S) and turbulence response time scale (~k/ε)
 - Anisotropy is not in equilibrium with local instantaneous strain rate

$$\begin{aligned} \frac{\partial \overline{u}_{i}}{\partial x_{i}} &= 0\\ \frac{D\overline{u}_{i}}{Dt} &= -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left[2\nu \overline{S}_{ij} - \overline{u'_{i}u'_{j}} \right] & \overline{S}_{ij} &= \frac{1}{2} \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{i}}{\partial x_{j}} \right) \\ \overline{u'_{i}u'_{j}} &= \frac{2}{3}k\delta_{ij} - \left(\overline{u'_{i}u'_{j}} \right)_{aniso} & \text{Can we find a physically} \\ a_{ij} &\equiv -\frac{(\overline{u'_{i}u'_{j}})_{aniso}}{k} &= \frac{\overline{u'_{i}u'_{j}}}{k} - \frac{2}{3}\delta_{ij} & \text{implemented in CFD convide-range of complex for the anisotropy and the set of the anisotrop} \end{aligned}$$

-accurate closure

can be readily

les for solving a

ow problems?

Approach: Anisotropy Transport Equation

- The exact equation for the evolution of the anisotropy is known Relaxation Destruction $\frac{Da_{ij}}{Dt} = -\left(\frac{P}{\epsilon} - 1\right) \frac{\epsilon}{k} a_{ij} + \frac{1}{k} \left[P_{ij} - \frac{2}{3}P\delta_{ij}\right] + \frac{1}{k} \prod_{ij} - \frac{1}{k} \left[\epsilon_{ij} - \frac{2}{3}\epsilon\delta_{ij}\right]$ Transport Lagrangian variations (nonequilibrium) $Production \qquad Redistribution (pressure-strain)$
- Production can be expanded exactly in terms of a_{ij}, S_{ij}, and W_{ij}

$$\left[P_{ij} - \frac{2}{3}P\delta_{ij}\right] = -\frac{4}{3}k\overline{S}_{ij} - k\left(a_{il}\overline{S}_{lj} + \overline{S}_{il}a_{lj} - \frac{2}{3}a_{nl}\overline{S}_{nl}\delta_{ij}\right) + k\left(a_{il}\overline{W}_{lj} - \overline{W}_{il}a_{lj}\right)$$

This gives the exact anisotropy transport equation that must be solved

$$\frac{Da_{ij}}{Dt} = -\left(\frac{P}{\epsilon} - 1\right)\frac{\epsilon}{k}a_{ij} - \frac{4}{3}\overline{S}_{ij} - \left(a_{il}\overline{S}_{lj} + \overline{S}_{il}a_{lj} - \frac{2}{3}a_{nl}\overline{S}_{nl}\delta_{ij}\right) \\
+ \left(a_{il}\overline{W}_{lj} - \overline{W}_{il}a_{lj}\right) + \frac{1}{k}\overline{\Pi}_{ij} - \frac{1}{k}\left[\epsilon_{ij} - \frac{2}{3}\epsilon\delta_{ij}\right] + \frac{1}{k}\left[D_{ij} - \left(a_{ij} + \frac{2}{3}\delta_{ij}\right)D\right]$$

Approach: Modeled Anisotropy Transport

The standard local modeled anisotropy equation is obtained from exact equation

$$\frac{Da_{ij}}{Dt} = -\left(\frac{P}{\epsilon} - 1\right)\frac{\epsilon}{k}a_{ij} - \frac{4}{3}\overline{S}_{ij} - \left(a_{il}\overline{S}_{lj} + \overline{S}_{il}a_{lj} - \frac{2}{3}a_{nl}\overline{S}_{nl}\delta_{ij}\right) \\ + \left(a_{il}\overline{W}_{lj} - \overline{W}_{il}a_{lj}\right) + \frac{1}{k}\Pi_{ij} - \frac{1}{k}\left[\epsilon_{ij} - \frac{2}{3}\epsilon\delta_{ij}\right] + \frac{1}{k}\left[D_{ij} - \left(a_{ij} + \frac{2}{3}\delta_{ij}\right)D\right] \\ \text{Primary nonlocal term; usually modeled in terms of purely local variables, } a_{ij}, S_{ij}, W_{ij} [e.g. LRR (1975), SSG models (1991)] \\ \frac{Da_{ij}}{Dt} = -\alpha_1\frac{\epsilon}{k}a_{ij} + \alpha_2\overline{S}_{ij} + \alpha_3\left(a_{il}\overline{S}_{lj} + \overline{S}_{il}a_{lj} - \frac{2}{3}a_{nl}\overline{S}_{nl}\delta_{ij}\right) \\ - \alpha_4\left(a_{il}\overline{W}_{lj} - \overline{W}_{il}a_{lj}\right) + \frac{1}{k}\left[D_{ij} - \left(a_{ij} + \frac{2}{3}\delta_{ij}\right)D\right] \\ \alpha_1 = \frac{P}{\epsilon} - 1 + C_1, \quad \alpha_2 = C_2 - \frac{4}{3}, \quad \alpha_3 = C_3 - 1, \quad \alpha_4 = C_4 - 1$$

Approach: Prior Anisotropy Models

 Reynolds stress transport models (e.g. LRR, SSG): involve the full solution of the six coupled partial differential equations

$$\frac{Da_{ij}}{Dt} = \begin{bmatrix} -\alpha_1 \frac{\epsilon}{k} a_{ij} + \alpha_2 \overline{S}_{ij} + \alpha_3 \left(a_{il} \overline{S}_{lj} + \overline{S}_{il} a_{lj} - \frac{2}{3} a_{nl} \overline{S}_{nl} \delta_{ij} \right) \\ -\alpha_4 \left(a_{il} \overline{W}_{lj} - \overline{W}_{il} a_{lj} \right) + \frac{1}{k} \left[D_{ij} - \left(a_{ij} + \frac{2}{3} \delta_{ij} \right) D \right]$$

 Algebraic stress models (e.g. Gatski and Speziale (1993), Girimaji (1996), Wallin and Johansson(2000): neglect nonequilibrium; retain nonlinearity

$$\begin{aligned} a_{ij} &= G_1 \frac{k}{\epsilon} \overline{S}_{ij} + G_2 \left(\frac{k}{\epsilon}\right)^2 \left[\overline{S}_{il} \overline{S}_{lj} - \frac{\delta_{ij}}{3} \overline{S}_{kl} \overline{S}_{kl} \right] \\ &+ G_3 \left[\overline{S}_{il} \overline{W}_{lj} - \overline{W}_{il} \overline{S}_{lj} \right] \end{aligned}$$

$$a_{ij} = -2 \frac{\nu_T}{k} \overline{S}_{ij}$$

Approach: Nonequilibrium Anisotropy Model

Instead of just first two terms on RHS, also retain nonequilibrium term on LHS

$$\frac{Da_{ij}}{Dt} = -\alpha_1 \frac{\epsilon}{k} a_{ij} + \alpha_2 \overline{S}_{ij} - \alpha_3 \left(a_{il} \overline{S}_{lj} + \overline{S}_{il} a_{lj} - \frac{2}{3} a_{nl} \overline{S}_{nl} \delta_{ij} \right) - \alpha_4 \left(a_{il} \overline{W}_{lj} - \overline{W}_{il} a_{lj} \right) + \frac{1}{k} \left[D_{ij} - \left(a_{ij} + \frac{2}{3} \delta_{ij} \right) D \right]$$

This yields a simple quasilinear governing equation for the anisotropy

$$rac{Da_{ij}}{Dt} = -rac{1}{\Lambda_m}a_{ij} + lpha_2 \overline{S}_{ij} \qquad \Lambda_m \equiv C_\Lambda rac{k}{\epsilon}$$

This simple ODE has an approximate convolution integral solution

$$a_{ij}(t) = -2C_{\mu}\frac{k}{\epsilon}\frac{1}{\Lambda_m(t)}\int_{-\infty}^t \overline{S}_{ij}(\tau)e^{-(t-\tau)/\Lambda_m(t)}D\tau$$

This solution accounts for nonequilibrium effects and some nonlocality

Approach: Nonequilibrium Model Formulation

Anisotropy written in terms of an effective strain rate tensor

$$a_{ij} = -2\frac{\nu_T}{k}\widetilde{S}_{ij} \quad \widetilde{S}_{ij}(t) = \int_{-\infty}^t \overline{S}_{ij}(\tau) \frac{e^{-(t-\tau)/\Lambda_m(t)}}{\Lambda_m(t)} D\tau \quad \begin{array}{l} \Lambda_m \equiv C_\Lambda \frac{k}{\epsilon} \\ C_\Lambda \approx 0.26 \end{array}$$

- Value of C_A is constant and determined from nonequilibrium test cases
- In good agreement with previous values of C_A
 - Couple to equations for k and ϵ to find Λ_m

$$rac{dk}{dt} = -ka_{ij}\overline{S}_{ij} - \epsilon$$
 $rac{d\epsilon}{dt} = -C_{\epsilon 1}\epsilon a_{ij}\overline{S}_{ij} - C_{\epsilon 2}rac{\epsilon^2}{k}$ Homogeneous turbulence

- Effective strain evaluated exactly for known straining histories S_{ii}(t)
- Homogeneous cases ideal for validation (impulsive shear, periodic shear, etc.)

	$lpha_1$	C_{Λ}
Yakhot et al. [29]	4.4	0.23
Launder $et al.$ [41]	2.4	0.42
Gibson and Launder [42]	2.7	0.37
Gatski and Speziale [5]	4.3	0.23

Results: Impulsively Sheared Turbulence

- LES data of impulsively sheared turbulence from Bardina et al. (1983)
- Boussinesq model predicts immediate increase in turbulence kinetic energy

$$P = -k \, a_{ij} \overline{S}_{ij}$$

$$a_{12}(t) = a_{21}(t) = -rac{
u_T}{k}S$$

 Nonequilibrium model correctly predicts initial decay

$$a_{12}(t) = a_{21}(t) = -\frac{\nu_T}{k} S\left[1 - e^{-t/\Lambda_m}\right]$$

 Nonequilibrium k lags behind equilibrium k for all times

$$\overline{S}_{12}(t) = \overline{S}_{21}(t) = \begin{cases} 0 & \text{for } t < 0 \\ S/2 & \text{for } t \ge 0 \end{cases}$$

Results: Piston Driven Turbulence

- Experimental data from Chen, Meneveau, and Katz (2006)
- Equilibrium model predicts large changes in anisotropy during straining and destraining; zero anisotropy during relaxation phase
- Nonequilibrium model correctly predicts gradual changes in anisotropy and nonzero anisotropy during relaxation

Hamlington & Dahm, PoF, 2008

Results: IC Engine and RCM

Results: Periodically Sheared Turbulence

Approach: Time-Local Model Formulation

Nonequilibrium turbulence anisotropy relation

$$a_{ij}(t) = -2C_{\mu}\frac{k}{\epsilon}\widetilde{S}_{ij}(t) \qquad \widetilde{S}_{ij}(t) = \int_{-\infty}^{t} \overline{S}_{ij}(\tau)\frac{e^{-(t-\tau)/\Lambda_{m}(t)}}{\Lambda_{m}(t)}D\tau$$

Time-expansion of strain rate tensor history along mean-flow streamline

$$\overline{S}_{ij}(\tau) = \overline{S}_{ij}(t) - \frac{D\overline{S}_{ij}}{Dt}\Big|_{t} (t-\tau) + \frac{1}{2} \left. \frac{D^2\overline{S}_{ij}}{Dt^2} \right|_{t} (t-\tau)^2 + \cdots$$

Substitute in convolution integral for effective strain rate

$$\widetilde{S}_{ij}(t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left. \frac{D^n \overline{S}_{ij}}{Dt^n} \right|_t \int_{-\infty}^t (t-\tau)^n \frac{e^{-(t-\tau)/\Lambda_m}}{\Lambda_m} D\tau$$

Provides exact time-local form of effective strain rate tensor

$$\widetilde{S}_{ij} = \overline{S}_{ij} + \sum_{n=1}^{\infty} \left(-\Lambda_m\right)^n \left.\frac{D^n \overline{S}_{ij}}{Dt^n}\right|_t \qquad \Lambda_m \equiv C_\Lambda \frac{k}{\epsilon} \qquad C_\Lambda \approx 0.26$$

Results: Time-Local Periodic Shear

Results: Oscillating Channel

Results: Benchmark Supercritical Wing

Turbulence and Energy Systems Laboratory

56

Outlook

- This has been a "physics based" approach to modeling
- Data-driven approaches have the potential to provide new model formulations and enhanced accuracy
- Sometimes data driven approaches are "physics agnostic" (e.g., autonomic closure for LES)
- Is there a way to combine a high-DOF physics based model (e.g., from anisotropy transport equation) with a data driven approach?

 $. \widetilde{\alpha}$

2

King, Hamlington & Dahm, PRE, 2016

$$\widetilde{S}_{ij} = \overline{S}_{ij} + \sum_{n=2}^{\infty} \frac{C_2^{(n)}}{\alpha_2} \Lambda^{2n-2} \left(\nabla^2\right)^{n-1} \overline{S}_{ij} + \sum_{n=1}^{\infty} (-\Lambda_m)^n \frac{D^n \overline{S}_{ij}}{Dt^n}$$