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Motivation: Wind Farm Layout Optimization
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Adjoint optimization of wind-farm layout using mixing length RANS model
- How do we account for dynamically varying winds and control?
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‘Motivation: Compressible Flow Optimization
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Adjoint optimization (remove recirculation) in supersonic flow using SST k-w
- How do we model thrust vectoring, shock-turbulence interactions, etc.?
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Challenge: Nonequil

ibrium Flow Effects

= Many commonly-used RANS models are inaccurate in complex flows, which
will pose contin issues as RANS is used for optimization, uncertainty
quantification, reduced order modeling etc.

= Nonequilibrium: Large variatio
scale (~1/S) and turbulence res

ns in flow quantities relative to straining time
ponse time scale (~k/g)

» Anisotropy is not in equilibrium with local instantaneous strain rate
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Can we find a physically-accurate closure
for the anisotropy a; that can be readily
implemented in CFD codes for solving a
wide-range of complex flow problems?
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‘Approach: Anisotropy Transport Equation

= The exact equation for the evolution of the anisotropy is known
Relaxation Destruction
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= Production can be expanded exactly in terms of ajjy S
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= This gives the exact anisotropy transport equation that must be solved
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‘Approach: Modeled Anisotropy Transport

= The standard local modeled anisotropy equation is obtained from exact equation
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rimary nonlocal term: usuall HighoRe
modeled in terms of purely local Isotropy

variables, a;, S;, W;[e.g. LRR
(1975), SSG models (1991)]
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Approach: Prior Anisotropy Models

0 involve the full solution of
the six coupled partial differential equations
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Approach: Nonequilibrium Anisotropy Model

Instead of just first two terms on RHS, also retain nonequilibrium term on LHS
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This yields a simple quasilinear governing equation for the anisotropy
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This simple ODE has an approximate convolution integral solution

k1 [ = e

This solution accounts for nonequilibrium effects and some nonlocality
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Approach: Nonequilibrium Model Formulation

Anisotropy written in terms of an effective strain rate tensor

k
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= Value of C, is constant and determined from —
nonequilibrium test cases Yakhot et al. [29] 44 023
Launder et al. [41] 24 0.42
. . Gibson and Launder [42] 2.7 0.37
= In good agreement with previous values of C, Gatski and Speziale [5] 4.3 0.23

= Couple to equations for k and € to find A
dk — de — €2

prie —ka;jSij —€  — = —Cece€a;jSij — Cea—

Homogeneous turbulence
dt k } J

= Effective strain evaluated exactly for known straining histories S;(t)

Homogeneous cases ideal for validation (impulsive shear, periodic shear, etc.)
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Results: Impulsively Sheared Turbulence

= LES data of impulsively sheared S1a(t) = Sau(t) = { 0 for t<O
turbulence from Bardina et al. (1983) S/2 for ¢ >0
= Boussinesg model predicts immediate
increase in turbulence kinetic energy o — SKE
NKE LRR RST
P=—k a,zjgm === [RR model

vV
alz(t) = a21(t) = —?TS

k
= Nonequilibrium model correctly %o 15

predicts initial decay

vr _ 1= =" ‘ : ]
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ai2(f) = ax(?) k ¢ al LES
= Nonequilibrium k lags behind | | . | |
equilibrium k for all times 05 1 2 3 4 5 6

Hamlington & Dahm, PoF, 2008
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Results: Piston Driven Turbulence

= Experimental data from Chen, Meneveau, and Katz (2006)

= Equilibrium model predicts large changes in anisotropy during
straining and destraining; zero anisotropy during relaxation phase

= Nonequilibrium model correctly predicts gradual changes in

anisotropy and nonzero anisotropy during relaxation Hamlington &
Dahm, PoF, 2008
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Results: IC Engine and RCM

Hamlington &
Ihme, FTC, 2014

(a) Internal combustion engine. (b) Rapid compression machine.
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Results: Periodically Sheared Turbulence

= DNS data from Yu and Girimaji (2006)

= Equilibrium model predicts anisotropy and o
shear in phase; over-predicts amplitude

= Nonequilibrium model predicts correct
phase and decreasing amplitude with
increasing shearing frequency
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Approach: Time-Local Model Formulation

Nonequilibrium turbulence anisotropy relation
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= Time-expansion of strain rate tensor history along mean-flow streamline
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Substitute in convolution integral for effective strain rate
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Provides exact time-local form of effective strain rate tensor
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Results: Time-Local Periodic Shear
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Results: Oscillating Channel

Direction of upper
wall movement
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Results: Benchmark Supercritical Wing
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Outlook

(a) True 7 (b) Autonomic 77;

= This has been a “physics based”
approach to modeling

= Data-driven approaches have the
potential to provide new model
formulations and enhanced
accuracy

= Sometimes data driven
approaches are “physics agnostic
(e.g., autonomic closure for LES)

= |s there a way to combine a high-
DOF physics based model (e.qg.,
from anisotropy transport
equation) with a data driven

7

approach? . . 2
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