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Motivation: Wind Farm Layout Optimization

Adjoint optimization of wind-farm layout using mixing length RANS model
à How do we account for dynamically varying winds and control?

King et al., Wind Energy Sciences, 2017
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Motivation: Compressible Flow Optimization

Adjoint optimization (remove recirculation) in supersonic flow using SST k-⍵
à How do we model thrust vectoring, shock-turbulence interactions, etc.?

Recirculation

Recirculation

Topology 
optimization

Lapointe et al., 
AIAA Paper, 2017
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Challenge: Nonequilibrium Flow Effects

§ Many commonly-used RANS models are inaccurate in complex flows, which 
will pose contin issues as RANS is used for optimization, uncertainty 
quantification, reduced order modeling etc.

§ Nonequilibrium: Large variations in flow quantities relative to straining time 
scale (~1/S) and turbulence response time scale (~k/ε)
Ø Anisotropy is not in equilibrium with local instantaneous strain rate

Can we find a physically-accurate closure 
for the anisotropy aij that can be readily 
implemented in CFD codes for solving a 
wide-range of complex flow problems? 
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Approach: Anisotropy Transport Equation
§ The exact equation for the evolution of the anisotropy is known

§ Production can be expanded exactly in terms of aij, Sij, and Wij

§ This gives the exact anisotropy transport equation that must be solved 

Production Redistribution
(pressure-strain)

Destruction

Transport

Relaxation

Lagrangian variations 
(nonequilibrium)
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Approach: Modeled Anisotropy Transport

High-Re 
Isotropy

Primary nonlocal term; usually 
modeled in terms of purely local 
variables, aij, Sij, Wij [e.g. LRR 
(1975), SSG models (1991)]

§ The standard local modeled anisotropy equation is obtained from exact equation
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Approach: Prior Anisotropy Models

§ Reynolds stress transport models (e.g. LRR, SSG): involve the full solution of 
the six coupled partial differential equations

§ Boussinesq hypothesis (e.g. k-ε, k-ω, SST):
neglect nonequilibrium and nonlinearity

§ Algebraic stress models (e.g. Gatski and 
Speziale (1993), Girimaji (1996), Wallin
and Johansson(2000): neglect 
nonequilibrium; retain nonlinearity
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Approach: Nonequilibrium Anisotropy Model

§ This yields a simple quasilinear governing equation for the anisotropy

§ This simple ODE has an approximate convolution integral solution

§ This solution accounts for nonequilibrium effects and some nonlocality

§ Instead of just first two terms on RHS, also retain nonequilibrium term on LHS
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Approach: Nonequilibrium Model Formulation

§ Anisotropy written in terms of an effective strain rate tensor

§ Value of CΛ is constant and determined from 
nonequilibrium test cases

§ In good agreement with previous values of CΛ

§ Couple to equations for k and ε to find Λm

§ Effective strain evaluated exactly for known straining histories Sij(t)

§ Homogeneous cases ideal for validation (impulsive shear, periodic shear, etc.)

Homogeneous turbulence



10

Results: Impulsively Sheared Turbulence

§ LES data of impulsively sheared 
turbulence from Bardina et al. (1983)

§ Boussinesq model predicts immediate 
increase in turbulence kinetic energy

§ Nonequilibrium model correctly 
predicts initial decay

§ Nonequilibrium k lags behind 
equilibrium k for all times

Bardina et 
al LES

SKE 
model

LRR RST 
model

NKE 
model

Hamlington & Dahm, PoF, 2008
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Results: Piston Driven Turbulence
§ Experimental data from Chen, Meneveau, and Katz (2006)
§ Equilibrium model predicts large changes in anisotropy during 

straining and destraining; zero anisotropy during relaxation phase
§ Nonequilibrium model correctly predicts gradual changes in 

anisotropy and nonzero anisotropy during relaxation Hamlington & 
Dahm, PoF, 2008



Results: IC Engine and RCM
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Hamlington & 
Ihme, FTC, 2014



Results: Periodically Sheared Turbulence

§ DNS data from Yu and Girimaji (2006)
§ Equilibrium model predicts anisotropy and 

shear in phase; over-predicts amplitude
§ Nonequilibrium model predicts correct 

phase and decreasing amplitude with 
increasing shearing frequency
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§ Nonequilibrium turbulence anisotropy relation

§ Time-expansion of strain rate tensor history along mean-flow streamline

§ Substitute in convolution integral for effective strain rate

§ Provides exact time-local form of effective strain rate tensor
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Approach: Time-Local Model Formulation



Results: Time-Local Periodic Shear

NKE
NKE n=1

SKE

NKE
NKE n=1

SKE

NKENKE n=1SKE
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Results: Oscillating Channel

Kinetic 
energy 
difference

Phase lag

Jirasek et al., 
AIAA Paper,  2018
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Results: Benchmark Supercritical Wing

Equilibrium 
k-⍵ model

Nonequilibrium
k-⍵ model

Jirasek et al., 
AIAA Paper,  
2018

Shift in shock locationHeeg & Piatak, AIAA Paper,  2013
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Outlook

§ This has been a “physics based” 
approach to modeling

§ Data-driven approaches have the 
potential to provide new model 
formulations and enhanced 
accuracy

§ Sometimes data driven 
approaches are “physics agnostic” 
(e.g., autonomic closure for LES)

§ Is there a way to combine a high-
DOF physics based model (e.g., 
from anisotropy transport 
equation) with a data driven 
approach?

King, Hamlington & Dahm, PRE, 2016


