

Perspective on Turbulence Modeling using Reynolds Stress Models : Modification for pressure gradients

Tobias Knopp, Bernhard Eisfeld

DLR Institute of Aerodynamics and Flow Technology

Experimental data shown were obtained in cooperation with Daniel Schanz, Matteo Novara, Erich Schülein, Andreas Schröder DLR AS

Nico Reuther, Nicolas Buchmann, Rainer Hain, Christian Cierpka, Christian Kähler Univ Bundeswehr München, Institute for Fluid Mechanics and Aerodynamics

Motivation: Digital aerospace products

Numerical simulation based future aircraft design

Challenges

C²A²S²

A/δ₉₉ extremely large: large Re and large A
#simulations large for design and optimization

Optimism to describe "first order" steady state aerodynamic flow phenomena within the RANS concept

High-quality data base (exp., DNS/LES)

Surface roughness

Experiments by Nikuradze

Surface roughness

Slide 9

Turbulent boundary layer at APG

Slide 11

Turbulent boundary layer at APG

Relevant parameter space?

Reynolds number

Reynolds number

Funded by DLR institute AS and by DFG

<u>Challenge:</u> Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

<u>Challenge:</u> Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

<u>Challenge:</u> Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

Measurement technique. Skin friction

Clauser chart (y+-range depends on ZPG, FPG, APG)

µPTV: Viscous sublayer mean velocity Oil film interferometry

Experiment #3 (August 2017) within DLR internal project

→ Mild separation and reattachment

- ✓ Mean velocity profiles
- → 2D2C Reynolds stresses

Aim: Empirical wall-law at APG for y<0.1 δ_{99}

Aim: Empirical wall-law at APG for y<0.1 δ_{99}

Hypothesis #1: Resilience of a small log-region

Hypothesis #1: Resilience of a small log-region

DLR

Composite profile Brown & Joubert 1969

Hypothesis #3: transition from log-law to sqrt-law depends on Δp_x^+ (probably more complex ...)

Composite profile Brown & Joubert 1969

Hypothesis #3: transition from log-law to sqrt-law depends on Δp_x^+ (probably more complex ...)

Hypothesis #3: transition from log-law to sqrt-law depends on Δp_x^+ (probably more complex ...)

Hypothesis #3: transition from log-law to sqrt-law depends on Δp_x^+ (probably more complex ...)

Hypothesis #4: decrease of log-law slope parameter K_i at APG

$$u_{\log}^{+} = \frac{1}{K_i} \log(y^+) + B_i$$

Hypothesis #4: decrease of log-law slope parameter K_i at APG

$$u_{\log}^{+} = \frac{1}{K_i} \log(y^+) + B_i$$

Hypothesis #4: decrease of log-law slope parameter K_i at APG

$$u_{\log}^{+} = \frac{1}{K_i} \log(y^+) + B_i$$

Hypothesis #4: decrease of log-law slope parameter K_i at APG

$$u_{\log}^{+} = \frac{1}{K_i} \log(y^+) + B_i$$

Hypothesis #4: decrease of log-law slope parameter K_i at APG

Hypothesis #4: decrease of log-law slope parameter K_i at APG

$$u_{\log}^{+} = \frac{1}{K_i} \log(y^+) + B_i$$

Hypothesis #4: decrease of log-law slope parameter K_i at APG

Hypothesis #4: decrease of log-law slope parameter K_i at APG

DLR strategy for RANS model improvement

DLR strategy for RANS model improvement

DLR strategy for RANS model improvement

Idea: A composite wall-law for the turbulent viscosity

RANS modification

→ HGR01 airfoil at Rec=25Mio, incidence angle α =10°

RANS modification

 \neg HGR01 airfoil at Rec=25Mio, incidence angle α =10°

Idea #1: New terms with Δp_x^+ -dependent local blending

Modifications should be activated only in parts of the boundary layer

$$\frac{\partial k}{\partial t} + \vec{\nabla} \cdot (\vec{U}k) - D_{k,t} - f_{b1}f_{b3}D_{k,p} = P_k - \epsilon_k$$

$$\frac{\partial \omega}{\partial t} + \vec{\nabla} \cdot (\vec{U}\omega) - D_{\omega,t} - f_{b2}f_{b3}D_{\omega,p} = P_\omega - \epsilon_\omega + f_{b2}f_{b3}D_{cd,\omega}$$

$$-D_{k,p}^{+} = -\frac{\mathrm{d}}{\mathrm{d}y^{+}} \left[-\sigma_{k,P} \nu_{t}^{+} \frac{\overline{u'v'}^{+}}{k^{+}} \Delta p_{x}^{+} \right]$$

Blending for y<0.15 δ_{99}

Idea #2: RANS model coefficients sensitized to pressure gradient Δp_x^+

Idea #2: RANS model coefficients sensitized to pressure gradient Δp_x^+

• The RANS model coefficient which controls the log-law slope ("Karman-constant") becomes a function depending on local flow

n / .)

Data structure of wall-normal lines for $\Delta p_x{}^+$

- → Extension of unstructured flow solver TAU
 - → Wall-normal lines
 - → Method to determine δ_{99} , δ^* , θ , H_{12}
 - → Coding efforts vs. Improvements in predictive accuracy

RANS model sensitized to pressure gradient Δp_x^+

RANS model sensitized to pressure gradient Δp_x^+

RANS model coefficient γ becomes a function of Δp_x^{+}

Questions to the audience

Turbulent Boundary Layer at ZPG

Turbulent Boundary Layer at ZPG

Conclusions

Conclusions

- DLR strategy: Physics based improvement of RANS using new laws of turbulence
 - First step: Wall law at APG
 - Composite wall law at APG (Brown & Joubert)
 - Small log-region around y⁺~100
 - Sqrt-law region above log-region
 - Machine learning for further tuning of first theoretical ideas

- Optimism to improve RANS models for aerodynamic flows during next decades
 - Great potential for future research
 - DNS/LES at relevant Re possible
 - New smart DNS flows (e.g., work of Spalart & Coleman, Soria & Jimenez)
 - Improved measurement techniques (e.g. advances in PIV/PTV)

End of the presentation

- Experimental data shown in cooperation with
 - Daniel Schanz, Matteo Novara, Erich Schülein, Andreas Schröder DLR AS
 - Nico Reuther, Nicolas Buchmann, Rainer Hain, Christian Cierpka, Christian Kähler, UniBw München
- Funding of measurement campaign by DFG within "Investigation of turbulent boundary layers with pressure gradient at high Reynolds numbers with high resolution multi-camera techniques"

Validation RETTINA II

Validation RETTINA II

Validation RETTINA II

Measuring technique

Modification of the k-omega model

✓ Modified consistent model

$$egin{aligned} -D_{k,t}^{+} &- D_{k,p}^{+} &= P_{k}^{+} &- \epsilon_{k}^{+} \ &- D_{\omega,t}^{+} &- D_{\omega,p}^{+} &= P_{\omega}^{+} &- \epsilon_{\omega}^{+} &+ D_{cd,\omega}^{+} \end{aligned}$$

Modification of the k-equation:
 Pressure diffusion term (Rao & Hassan)

$$-D_{k,p}^{+} = -\frac{\mathrm{d}}{\mathrm{d}y^{+}} \left[-\sigma_{k,P}\nu_{t}^{+} \frac{\overline{u'v'}}{k^{+}} \Delta p_{x}^{+} \right]$$

- Modification of the ω-equation:
 Pressure diffusion term
 - → Negative cross-diffusion term

$$-D^+_{\omega,p} = -rac{\omega^+}{k^+}D^+_{k,p}$$

$$D_{cd,\omega}^+ = \frac{2\sigma_{\omega 2}}{\omega} \frac{\mathrm{d}k^+}{\mathrm{d}y^+} \frac{\mathrm{d}\omega^+}{\mathrm{d}y^+}$$

Consistency with wall-law

→ Summary of boundary layer analysis

	Consistency with log-law at APG	Consistency with sqrt- law at APG
k-equation	No	No
ω-equation	Yes	No

$$-D_{k,t}^+ = P_k^+ - \epsilon_k^+$$

$$-D^+_{\omega,t} = P^+_\omega - \epsilon^+_\omega$$

Consistency with wall-law

→ Summary of boundary layer analysis

	Consistency with log-law at APG	Consistency with sqrt- law at APG
Modified k-equation	Yes	Yes
Modified ω-equation	Yes	Yes

$$-D_{k,t}^{+} - D_{k,p}^{+} = P_{k}^{+} - \epsilon_{k}^{+}$$
$$-D_{\omega,t}^{+} - D_{\omega,p}^{+} = P_{\omega}^{+} - \epsilon_{\omega}^{+} + D_{cd,\omega}^{+}$$

Consistency with wall-law

→ Summary of boundary layer analysis

	Blending active in log- law region at APG	Blending active in sqrt- law region at APG
Modified k-equation	Yes	Yes
Modified ω-equation	No	Yes

$$-D_{k,t}^{+} - D_{k,p}^{+} = P_{k}^{+} - \epsilon_{k}^{+}$$
$$-D_{\omega,t}^{+} - D_{\omega,p}^{+} = P_{\omega}^{+} - \epsilon_{\omega}^{+} + D_{cd,\omega}^{+}$$

Following ideas by Rao & Hassan, Catris & Aupoix

$$-\frac{\mathrm{d}}{\mathrm{d}y^{+}} \left(\sigma_{\omega} \nu_{t}^{+} \frac{\mathrm{d}\omega^{+}}{\mathrm{d}y^{+}} \right) = \gamma \left(\frac{\mathrm{d}u^{+}}{\mathrm{d}y^{+}} \right)^{2} - \beta_{\omega} \left(\omega^{+} \right)^{2}$$
$$\Leftrightarrow \qquad -D_{\omega,t}^{+} = P_{\omega}^{+} - \epsilon_{\omega}^{+}$$

Following ideas by Rao & Hassan, Catris & Aupoix

$$\Leftrightarrow \qquad \qquad -D^+_{\omega,t} = P^+_{\omega} - \epsilon^+_{\omega}$$

Conclusion: The ω -equation is **not consistent** with the assumed solution in the sqrt-law region at APG

Measurement technique combining different PIV systems

Requirements/Design criteria on a new flow experiment

- 1. Large Re_{θ} for sufficiently thick overlap region
- 2. Log-law established before entering the APG-section
- 3. Thick BL at low flow velocity so that PIV in viscous sublayer possible
- 4. Obtain large values for Δp_x^+ , i.e. $\Delta p_x^+ > 0.06$

Design of the test case using RANS-CFD with the DLR TAU code by DLR

Data for mean velocity down to y⁺=1 using LR-PIV with PTV

Particle-tracking velocimetry algorithm (PTV) applied to the LR-PIV data see also Kähler et al., Exp. Fluids (2012)

Boundary layer theory. An approximative model for the shear stress

Turbulent boundary layer equation

→ Consider the equation for wall-parallel mean velocity component U

$$\nu \frac{\partial^2 U}{\partial y^2} - \frac{\partial \overline{u'v'}}{\partial y} = \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}x} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} - \nu \frac{\partial^2 U}{\partial x^2} + \frac{\partial \overline{u'v'}}{\partial x}$$

 \neg Integration in wall-normal direction from y⁺=0 to wall-distance y

$$\frac{\tau}{\rho} = v \frac{\partial U}{\partial y} - \overline{u'v'} = \frac{\tau_w}{\rho} + \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}x} y + \int_{y'=0}^{y} U \frac{\partial U}{\partial x} \mathrm{d}y' + \int_{y'=0}^{y} V \frac{\partial U}{\partial y'} \mathrm{d}y'$$

→ Or in viscous inner units

$$\tau^{+} = \frac{\partial U^{+}}{\partial y^{+}} - \overline{u'v'}^{+} = 1 + \Delta p_{x}^{+}y^{+} + I_{cu}^{+}(y^{+}) + I_{cv}^{+}(y^{+})$$

Review: Modeling the total shear stress (van den Berg 1973)

→ Aim: Relate the total shear stress and the mean velocity profile for U

$$\tau^{+} = \frac{\partial U^{+}}{\partial y^{+}} - \overline{u'v'}^{+} = 1 + \Delta p_{x}^{+}y^{+} + I_{cu}^{+}(y^{+}) + I_{cv}^{+}(y^{+})$$

→ by approximating the integrated convective (or: mean inertial) terms

$$I_{cu}^+(y^+) = \frac{1}{u_\tau^2} \int_{y'=0}^y U \frac{\partial U}{\partial x} dy' , \quad I_{cv}^+(y^+) = \frac{1}{u_\tau^2} \int_{y'=0}^y V \frac{\partial U}{\partial y'} dy'$$

 \neg Van den Berg makes the modeling assumption that

$$U(x,y) = u_{\tau}(x) f(y^{+}(x,y)) , \quad y^{+}(x,y) = \frac{u_{\tau}(x)y}{v}$$

Review: Modeling the total shear stress (van den Berg 1973)

→ Modeling assumption $U(x,y) = u_\tau(x) f(y^+(x,y))$, $y^+(x,y) = \frac{u_\tau(x)y}{v}$

→ Then

$$\frac{\partial U}{\partial x} = \frac{\mathrm{d}u_{\tau}}{\mathrm{d}x} \left[f + y^{+} \frac{\mathrm{d}f}{\mathrm{d}y^{+}} \right]$$

 \neg For the V-velocity and using the continuity equation

$$V = -\int_0^y \frac{\partial U}{\partial x} dy = -\frac{\mathrm{d}u_\tau}{\mathrm{d}x} \int_0^y \left[f + y \frac{\mathrm{d}f}{\mathrm{d}y} \right] dy = -\frac{\mathrm{d}u_\tau}{\mathrm{d}x} \int_0^y \frac{\mathrm{d}}{\mathrm{d}y} [yf] \, \mathrm{d}y = -\frac{\mathrm{d}u_\tau}{\mathrm{d}x} yf$$

→ This gives for the mean inertial term

$$\int_0^y U \frac{\partial U}{\partial x} dy + \int_0^y V \frac{\partial U}{\partial y} dy = v \frac{du_\tau}{dx} \int_0^{y^+} f^2 dy^+$$

Review: Modeling the total shear stress (van den Berg 1973)

 \neg This gives the model by van den Berg (1973)

$$au^+ = 1 + \Delta p_x^+ y^+ + rac{
u}{u_{ au}^2} rac{{\mathrm d} u_{ au}}{{\mathrm d} x} \int_0^{y^+} f^2 {\mathrm d} y^+$$

→ Short notation:

$$au^+ = 1 + lpha y^+ + eta I_1$$

$$I_1 = \int_0^{y^+} f^2 \mathrm{d}y^+$$

- → With
 - → Pressure gradient parameter $\alpha \equiv \Delta p_x^+ = \frac{v}{\rho u_\tau^3} \frac{\mathrm{d}P}{\mathrm{d}x}$
 - → Wall shear-stress gradient parameter

$$eta = rac{
u}{u_{ au}^2}rac{\mathrm{d}u_{ au}}{\mathrm{d}x}$$

Extended modeling for the total shear stress

→ Modeling assumption $U(x,y) = u_{\tau}(x) f(y^+(x,y), \alpha(x))$

 \neg For the chain rule of differentiation we need

$$\frac{\partial y^+}{\partial y} = \frac{u_\tau}{v} , \quad \frac{\partial y^+}{\partial x} = \frac{y}{v} \frac{\mathrm{d}u_\tau}{\mathrm{d}x} , \quad \frac{\mathrm{d}\alpha}{\mathrm{d}x} = -\frac{3v}{\rho u_\tau^4} \frac{\mathrm{d}u_\tau}{\mathrm{d}x} \frac{\mathrm{d}P}{\mathrm{d}x} + \frac{v}{\rho u_\tau^3} \frac{\mathrm{d}^2 P}{\mathrm{d}x^2}$$

→ Then we obtain, e.g.

$$\frac{\partial U}{\partial x} = \frac{u_{\tau}^2}{v} \beta \left[f + y^+ \frac{\partial f}{\partial y^+} \right] + \frac{u_{\tau}^2}{v} \left(-3\alpha\beta + \alpha^* \right) \frac{\partial f}{\partial \alpha}$$

 \neg With an additional parameter taking into account d²P/dx²

$$\alpha = \frac{\nu}{\rho u_{\tau}^3} \frac{\mathrm{d}P}{\mathrm{d}x} , \quad \beta = \frac{\nu}{u_{\tau}^2} \frac{\mathrm{d}u_{\tau}}{\mathrm{d}x} , \quad \alpha^* = \frac{\nu}{u_{\tau}} \frac{\nu}{\rho u_{\tau}^3} \frac{\mathrm{d}^2 P}{\mathrm{d}x^2} , \quad \gamma = -3\alpha\beta + \alpha^*$$

Extended modeling for the total shear stress

 \neg This gives the extended model

$$au^+ = 1 + lpha y^+ + eta I_1 + \gamma I_2$$

 \neg With integrals

$$I_1 = \int_0^{y^+} f^2 dy^+ \qquad I_2 = 2 \int_0^{y^+} f \frac{\partial f}{\partial \alpha} dy^+ - f \int_0^{y^+} \frac{\partial f}{\partial \alpha} dy^+$$

- → and with parameters
 - → Pressure gradient parameter

- $\alpha \equiv \Delta p_x^+ = \frac{v}{\rho u_\tau^3} \frac{\mathrm{d}P}{\mathrm{d}x}$ $\beta = \frac{v}{u_\tau^2} \frac{\mathrm{d}u_\tau}{\mathrm{d}x}$ $\gamma = -3\alpha\beta + \alpha^*$
- → Wall shear-stress gradient parameter
- → Cross parameter
- \neg d²P/dx² -parameter

Characteristic non-dimensional parameters

→ Comparison of the characteristic non-dimensional parameters

Turbulent shear stress in non-equilibrium flow

→ Mean inertial terms cause a significant reduction of the turbulent shear stress $\tau^+=1+\Delta p_x^+y^+$

Slide 99

Systematic trend/quantitative formula for variation of K_o

Conclusion

Conclusion.

- Design of a flow experiment suitable to study the law-of-the-wall for flows at a substantial adverse pressure gradient
 - \neg Sufficiently large overlap-layer due to large Re_{θ}
 - → Significant adverse pressure gradient Δp_x^+ up to Δp_x^+ =0.065
- → Combination of different PIV techniques gives high-quality data set
 - → Large number of velocity profiles
 - → High quality gradients and slope diagnostic functions
 - \neg Comparison of direct and indirect method for u_{τ} locally

Conclusion.

- → The log-law does no longer describe the overlap layer 300 < y⁺ < 0.2 δ_{99}^+
- → A generalized half-power law (or modified log-law) gives a good description
- ✓ Idea of a composite wall-law by Brown & Joubert (1969) is supported
 - → Log-law-fit region is thin $60 < y^+ < 130$
 - → 1/slope K_i decreasing with increasing Δp_x^+ as devised by Nickels (2004)
 - → Modified log-law region for 300-400 < y⁺ < 0.2 -0.4 δ_{99}^+
 - \rightarrow 1/slope K_o decreasing with increasing Δp_x^+
 - \neg But mean inertial terms need to be accounted for K_o

Characterization of the flow

Characterization of the flow

Characterization of the flow

Universal log-law in zero-pressure gradient region

✓ Universal log-law at the inlet of the adverse pressure gradient section

Systematic trend/quantitative formula for variation of B_i

Systematic trend/quantitative formula for variation of B_i

Measurement technique using PIV

Large-scale 2D2C PIV. Instantaneous flow field

Motivation: Digital aerospace products

Numerical simulation based future aircraft design

Challenges

C²A²S²

A/δ₉₉ extremely large: large Re and large A
#simulations large for design and optimization

Slide 112

Motivation: Turbulent boundary layers at adverse pressure gradient

During take-off and landing Significant adverse pressure gradient (APG)

Goals:

- \Rightarrow Wall-laws at APG
- \Rightarrow Improvement RANS models

