Realize Your Product Promise®

NSYS[®]

Status of Turbulence Modelling at ANSYS

Florian Menter

Chief Scientist

ANSYS Germany GmbH

Problem Description

- 2D RANS CFD simulations of windturbine airfoils predict substantially too high C_{lmax}
- Even the fairly 'aggressive' SST especially tuned for separation/stall prediction of aerodynamic devices is too high on high C_{Imax}

SST – Fully Turbulent (FT-tripped), Re=4.10⁶

Experiment for DU-96-W-180 airfoil was carried out in the Delft University:

Timmer W. A. & R. P. J. O. M. van Rooij (2003). "Summary of the Delft University Wind Turbine Dedicated Airfoils", AIAA Paper, 2003-0352

Testing of SST-HL model for basic turbulent flows

- SST-HL (High Lift)
 - Allows reduction of a₁ without destroying basic calibration
 - Maintains Flat Plate
 - Produces more separation for Diffuser CS0
 - More separation for NACA 4412 (good or bad?)

SST and SST-HL models

Flow around an A-Airfoil

- Experiment for clean airfoil model was carried out in the F2-ONERA wind tunnel at Re=2.1·10⁶ and M≈0.15
- Preliminary CFD results indicates that laminar-turbulent transition has a big impact on the airfoil characteristics
- Therefore current numerical investigations are carried out using transition models
 - Intermittency-SST model (γ-SST)
 - Intermittency-SST model with HL correction (γ-SST-HL)

July 13, 2017

• Computational domain is based on the experimental wind tunnel

1283

3D Simulations - Flow Structure

- Wind tunnel (L_z=2.3C) without sidewall BL account
 - Symmetry boundary conditions in spanwise direction are used for slip wall imitation
 - Incompressible flow, Re = $2.1 \cdot 10^6$, $\alpha = 12^{\circ} 16^{\circ}$
- Computational mesh is based on the 2D mesh extruded in spanwise direction with uniform grid step (80 cells in Z direction)
 - Total mesh size is about 10M cells

Airfoil characteristics at midspan section

- γ-SST model delays appearance of 3D structures which leads to an overprediction of lift coefficient
- γ-SST-HL model fits experimental data (lift and pressure coefficient) well in the 3D wind tunnel setup

Streamwise velocity profiles at AoA=12°

- When looking at a number of airfoil cases it seems we need to recalibrate RANS models to be more aggressive on separation
- Need to replace NACA 4412 (1979) data with (1987) data
- Would such a model be overly aggressive on shock-BL cases?
- Free parameter a₁
 helpful, as models need to be adjusted to flow types

d_w /C

BSL2 Turbulence Models

- Develop two-equation model framework with tunable coefficients
 - In the past model coefficients have been exposed however they are inter-related and any non-expert change will lead to deterioration of basic flows (flat plate)
 - We have a range of scale equations (k- ω , BSL/SST, k- ϵ , RKE, V2F)
 - To allow users to select a suitable model for their application
 - Very expensive as each model needs to be developed/combined with
 - Y+ insensitive wall, rough wall, transition, CC, buoyancy, DES/SBES,
 - Wouldn't it be better to have 1 scale equation which can be tuned over a wide range of the parameter space.
 - BSL2 will have several free coefficients which do not affect basic flows

BSL2 model formulation

- BSL2 will have several free coefficients which do not affect basic flows:
 - C_{SEP} allow to steer separation
 - C_{NW} allow to calibrate near wall behavior
 - C_{MIX} alow to calibrate free shear flows independently from wall boundary layers

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho k U_j)}{\partial x_j} = P_k - C_\mu \rho k \omega + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]$$
$$\frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho \omega U_j)}{\partial x_j} = C_{\omega 1} \frac{\omega}{k} P_k - C_{\omega 2} \rho \omega^2 + \rho C_{\omega 3} \frac{2}{\sigma_\omega \omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right]$$

Flat Plate Boundary Layer

- Incompressible flow
 - $\text{Re} = 10^7$
- Model maintains calibration for wide range of coefficient changes

ΛNSYS

CSO Diffuser (Driver NASA): C_{sep}=1, C_{mix}=0

Backward-Facing Step

Mixing Layer

Mixing Layers: Hump

Hump Flow: Velocity Profiles

NNSYS

Turbulence Kinetic Energy and Eddy Viscosity Ratio

Aerodynamic Flows: A-Airfoil - C_{Sep}

- Incompressible flow
 - Re = $U_{\infty} \cdot C/v = 2.1 \cdot 10^6$
 - $\alpha = 0^{\circ}-20^{\circ}$
- The size of computational domains corresponds wind tunnel parameters
- Boundary conditions
 - Uniform freestream is specified at the inlet
 - Tu = 0.1%, v_t/v=1
 - Constant pressure is specified at the outlet boundary
 - Non-slip walls are specified on the airfoil surface
 - Slip walls is specified on top and bottom tunnel walls

ROTATIONAL AIRFOIL

AoA

FREESTREAM

Re=2.1.106

WALL BOUNDED FLOWS

Zero Pressure Flat plate Boundary Layer

٠

Mixing Layer

Flow scheme Incompressible flow $- U_{ref} = 6 [m/s]$ $- \rho = 1.185 [kg m⁻³]$

Prediction quality is almost identical for all the measurements planes

Ð

ο

FREESTREAN

ADIABATIC WALLS ►

7

1

0

1.5

0.5

Υ/H

Backward-Facing Step

5.9

6.

7.4

4.8

 $U/U_{ref} + X/H$

0 0

0.2

0.4

U/U_{ref}

0.6

0.8

2.2

3.7

3

Flow Around Airfoils in Wind Tunnels

- The size of computational domains corresponds wind tunnel parameters
- Uniform freestream corresponded experimental values is specified at the inlet

Flow Around Airfoils in Wind Tunnels: NACA-4412 at α =12°

NNSYS

Transonic Flows

- RAE-2822, Case-10
 - Re = $6.2 \cdot 10^6$
 - Ma = 0.75
 - Pr = 0.7
 - $\alpha = 3.19^{\circ}$ angle of attack

- Re = $2.763 \cdot 10^6$
- Ma = 0.875
- Pr = 0.7

NNSYS

July 13, 2017

Flow around a NACA-4412 airfoil

- Combination of BSL2 (R18) with EARSM gives improved separation prediction without need to adjust C_{Sep}!
- For this reason alone, a proper two-equation model should be adjustable, so that it can be used stand-alone or in combination with RSM/EARSM

Summary - RANS

- SST Model not aggressive enough for prediction of Cl_{max} on airfoils
- SST-HL model tuned for that purpose slight over-separation for transonic flows
- NACA 4412 should probably abandon Coles-Wadcock (1979) experiment
- BSL2
 - Model with free coefficients
 - Can be tuned over a wide range of flows by the user
 - Coefficient settings (C_{SEP}=2, C_{MIX}=0.35, C_{NW}=0.5) can do all flows (CSO, backstep, all Airfoils, RAE 2822, B-J bump) therefore more consistent than SST
 - Can BSL2 replace existing scale-equations?
 - Intermediate step to machine learning (ML)

