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ICF target performance is sensitive to effects of
turbulent mixing, driving RANS development

= In inertial confinement fusion (ICF) applications at the National
lgnition Facility (NIF), laser energy is converted to x-rays in order
to implode a spherical deuterium-tritium (DT) capsule and
achieve thermonuclear energy release.

= This process is sensitive to
turbulent mixing of ablator
material into the DT hot spot.

= Mixing is driven by Rayleigh-
Taylor (RT) and Richtmyer-
Meshkov (RM) instabilty
growth

Duffell, P.C. App J. (2016)
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For mixing applications, the buoyancy
production term is generally dominant

= Consider the transport of turbulence kinetic energy, k:
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TKE budget across an RT mixing layer (At = 0.5). Livescu, et al. J. Turb. 2009

LLNL-PRES-733799 ional Nuclear Security A

Lawrence Livermore National Laboratory N AY ﬁfoﬂ 3



Closure of the mass-flux velocity is key for for
turbulent mixing applications

= Consider a model transport equation for k:
— We now introduce the turbulent length scale, L = k3/2/6, and the mass-

flux velocity, a; = —U;
Dk il 5(2k)%% 0 [ Ok op
_ _ _C . 0p
’Dt = PTiog, P L T b \Nwoz ) T Yo,
production dissipation turbulentvtransport buoyancy

= Closure of the mass-flux velocity leads to a family of two- and

three-equation Boussinesq models favored at LLNL.

— An algebraic gradient diffusion closure leads to the KL model (Dimonte &
Tipton, Phys. Fluids 2006)

— Solving a transport equation for a, leads to the KLA model (Banerjee, et
al., Phys. Rev. E 2010; Morgan & Wickett, Phys. Rev. E 2015).

. . ". 1
Lawrence Livermore National Laboratory N ISS‘{_% 4
National Nuclear Security Administration

LLNL-PRES-733799




Similarity analysis is used to derive constraints
on model constants

= Assuming an ansatz of a self-similar
growth allows us to derive a set of
constraints on model constants
parameterized by experimentally
observable quantities (Morgan &
Wickett, PRE, 2015):

Typical Value

ap RT bubble growth rate 0.060

0 RM growth rate 0.25

E, /APE RT energy ratio 0.50
n HIT decay constant -1.11
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These constraints enforce a particular profile
and growth rate

= Adhering to these constraints enforces a quadratic TKE profile

fora 1D Raylelgh Taylor mlxmg Iayer (At = 0. 05)
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FIG. 1. Normalized profiles obtained for a one-dimensional RT mixing layer of A7 = 0.05 at non-dimensional time t = t(A7g/Ao)"/? =
324 (0), 648 (0), 972 (A), and 1296 (O): (a) K* = k/Ko, (b) L* = L/Lo, (¢) py = p:/(CupLo+/2Ky), (d) a* = (A} — 1)a, /(CAr+/2Ko),

(e) b* = (1 — A2)b/A?%, and (f) Y* = heavy fluid mass fraction.

Lawrence Livermore National Laboratory
LLNL-PRES-733799

o
NS
29
National Nuclear Security Administration



These constraints enforce a particular profile
and growth rate

. and the expected growth rate is recovered
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FIG. 2. Convergence of a one-dimensional RT mixing layer at Ay = 0.05 with grid resolution of 200 (O), 400 (OJ), 800 (A), and 1600 ()
zones. (a) Solutions of h;, Ko, and Ly. Dimensions are in cm for 4, and Lo and 10~ (cm/us)? for K. (b) Time history of o, = h;, /A7 gt>.
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These constraints enforce a particular profile
and growth rate

= A quadratic TKE profile yields reasonable agreement in
comparisons with LES ...
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Heavy species mass fraction (left) and normalized TKE profiles (right) for LES and RANS of an RT
mixing layer at At = 0.05. Morgan et al., J. Turbul. 2017. DOI 10.1080/14685248.2017.1343477
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These constraints enforce a particular profile
and growth rate

= ... and in comparisons with experiment for Richtmyer-Meshkov
mixing layer growth

(agM=1.20 (b) M=1.50 8 (c)M=1.98 .0
—_ 2-
£
) 6
£15 -7 - - -
o ---0=0.262 6 =0.262
2 4l
g 1
X
£ - o -
0.5}
! 0 '
0 2 4 6 0 1 2
time (ms) time (ms) time (ms)

FIG. 4. Mixing width profiles calculated for three different shock tube experiments: (a) Leinov et al. experiment 1570 [18] (5o = 0.110 cm,
test section = 23.5 cm), (b) Vetter and Sturtevant experiment 85 [19] (hy = 0.224 cm, test section = 60.0 cm), and (c) Vetter and Sturtevant
experiment 87 [19] (hy = 0.283 cm, test section = 49.0 cm). Symbols () indicate experimental data. Dashed lines are power law profiles fit
to the simulation data.
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This is a good starting point, but reality is never
so ideal. What about transition?
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= Mixing layers do not start out in a self- ~ Ee——————_ ’ |
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Mixedness vs. generation (left) and normalized contours (right) for LES of an RT mixing layer at
At = 0.05. Morgan et al., J. Turbul. 2017. DOI 10.1080/14685248.2017.1343477
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By design, the RANS model does not capture
transition to turbulence.

= Transition to self-similarity is o)
. =1- d dy .
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Self-similarity parameter (left) and TKE evolution (right) for LES and RANS of an RT mixing layer at
At = 0.05. Morgan et al., J. Turbul. 2017. DOI 10.1080/14685248.2017.1343477
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Experiment designers are additionally applying
these models to problems in two dimensions.

= Reality is not 1D. NIF e B -

' Q No recession

capsules, for instance, may 100
include two- or three-

dimensional features - _f
§ 01——
= Can a RANS model designedto 3 @ —
reproduce one-dimensional —
mixing layer growth rates be 100,
successfully applied in
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The product of D and T number densities, for simulations with Oum and 2um recessed CD layer,
showing the spatial distribution of shell-gas mix. Smalyuk et al. Phys. Rev. Lett. 112, 025002 (2014).
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As engineers push RANS beyond an idealized
design space, can our models keep up?

= Model development at LLNL is driven primarily by the need to
accurately predict RT and RM instability growth

= Our models do a good job at predicting idealized growth under
the assumption of a 1D, fully developed mixing layer

= Experiment designers apply these models in regimes in which

model assumptions may break down
— Transitional turbulence

— Two-dimensional simulations

— Combined instabilities (e.g. RT + KH)

Can data-driven approaches help correct errors when a model is
pushed to the limits of its design assumptions?
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Backup Slides
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Backup Slides: The KL model
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Backup Slides: The KLA model
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generation number and time

Backup Slides: The connection between

Growth rate, a
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Backup Slides: Self-similar evolution of RANS
models
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Figure 12. Contours of RANS profiles as a function of time and space. From top to bottom: light species
mass fraction Y1, turbulence kinetic energy k, mass-flux velocity a, and density-specific-volume correlation b.
Results obtained with the k-L-a model are plotted in the left column, and results obtained with the BHR-2
model are plotted in the right column. k, a, and b profiles are normalized by the value at xy = 0.
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