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A numerical and theoretical framework is being used to
comprehensively evaluate the predictive capabilities and
limitations of Reynolds-averaged (RA) mixing models

= Assess merits of lower and higher order closure models for turbulent mixing

— 2-, 3-, 4-equation

— 2 dissipation rate/lengthscale

— Reynolds stress

— multi-velocity

Understand implications of using these models for calibration and initialization
— derive and analyze expressions for self-similar growth parameters: calibration

— assess complexity of initialization with increasing number of model equations
Assess predictions of models against a broad range of flows critically and objectively,
including self-similar and non-self-similar turbulent flows

— constant g Rayleigh—Taylor, reshocked Richtmyer—Meshkov, shear

— variable g Rayleigh—-Taylor, blast waves, shock—turbulence interaction

— combined instabilities

Evaluate differences and advantages/disadvantages of & and L-based models
— physics, numerics

To achieve a good balance between predictive capability, model complexity, and robustness,
it is important to establish a point of diminishing returns where LES should be used instead of RA models
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The turbulent kinetic energy and the dissipation
rate or lengthscale equation can be expressed in a
concise form that unifies the models

= Turbulent kinetic energy and dissipation rate/lengthscale equation (Z = C,K™ &" with
K—&and K—L models given by m=0,n=1and m=3/2, n =-1), where normalized
mass flux is a; = p’v7 /p and I1, is Sarkar pressure—dilatation model:
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= Reynolds stress tensor is
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The normalized mass flux a; can be modeled
algebraically (2-equation) or differentially
(>2-equation model)

= Algebraic model for K-Z models:
A R (85_ p 617)

5 0,6 0r;  0,p\dzx; 7P Oz,

aj =
= Modeled transport equation for K-Z-a—-(b) models
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= Requires an algebraic or differential model for b in K-Z-a-(b) models

0 . 0 . 9 O Oy pZMmb & (vE 9

= Rather than solving an equatlon for b, can use an algebraic model in K-Z-a
models (c > 0 prevents divergence in At T 1 limit)

f1/(p1 +cp) + (1 — f1)/(pa + cp) ]_1
)

b=PV 1=l = R | 5 G T ep v (L )55/ (a + P
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Self-similar solutions of 2-, 3-, and 4-equation
models for Rayleigh-Taylor flow yield
progressively more complex expressions for a™*

K—L model

. C,u CLS (CLO — CL2)2
Oé(CWCLwJp,CLO,CLz) = 80, (1 — CLU)(l — Cra)
K—L—a model (generalization of Morgan—Wickett expression, but suppressing At
and ¢ dependence for clarity)
Cls (Cpo — Cpra)’
3 (1 — CLQ)[ZIOal (1 — CL()) + O (BGL() — (o — 2)]

a(Crs,Cro,Cro,Cor) =

K—L—a—b model

Cro— Cra)?
O{(OLS’ Cro:Cr2, Cuo, Car, Cb2) = M

Cra—1
2Chs (CLD — l) /3+CL5 [20(10— 2—01;0/34-(2— 2C .0 +1/3) CLZ]

. 4C (Cro—1)+3(Cra — Cro) 2Cs2 (Cro — 1) + (Cra — Cro) Crs]
Observations

— additional equations add (and subtract) coefficients, and there may be insufficient physical
constraints to completely determine all coefficients

— a; and b equations do not apparently add new physics, but are required for closure (e.g., 2- and 4-
equation models can both be calibrated to predict a particular, constant )

— models are all based on an isotropic eddy viscosity, with Boussinesq model for Reynolds stress

*Joint work with summer student Tucker A. Hartland
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The evolution of the mixing layer parameters
indicates that all of the models can be calibrated to
_achieve self-similarity with a specified o~ 0.05

Mixing layer parameter «(t) = h(t) / (At g t?) = Self-similar growth
05 . parameters « can
045 W = Kke—  Kiab - bederived
04l K — K-L (Cpo = 0) | analytically for
035 K-geg ——— K-L-a (C/p=0) ——— _ constant g for each
03l Y\ KLa——  Klab(Cp=0)—— model
0022 NN = Allows models to
015 _ be calibrated to
01 b N e | same late-time
005 === - growth (at least for
0 | small At)

0O 01 02 03 04 05 06 07 08 08 1
= No longer true for

Time [s] complex accelera-
tions such as g off,
Models approach self-similarity at different rates g reversed, or g

accel/decel/accel
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The K- model is consistent with miscible
Rayleigh-Taylor mixing, while the K-L-a model is
consistent with immiscible mixing

Mixing layer parameter
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Rayleigh-Taylor mixing cases with several complex
accelerations were compared to determine if the
models could reproduce experimental and DNS data

= Models applied to At = 0.5 Rayleigh-Taylor flows with (g, = 2000 cm/s?)

— constant: g=-9, (unstable)
— off: g=-g,fort<t,y/2 (unstable) g=0fort>t, /2 (neutral)
— reversed: g=-g,fort<t, /2 (unstable) g =g, fort>t, /2 ( )
— accel/decel/accel: g=-g,fort<t, /3 (unstable) g=g,fort, /3<t<2t, /3
( ) g=-g,fort>2t, /3 (unstable)
- Rocket rig experiments 25T 1 T - |
< 3 > DNS -
.'9 — —
c - 15— —+
£ , U A el
8 " é | Reversed gravity
X s
=" : 0.5 — ——
= 5 n 4
unstable 5 AN I R R
o A A Te. [ SN am mam e ame ot 0
0o 1 2 3 4
Time Time

complex g cases have lower widths than constant g case
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Turning off, reversing, or alternating the sign of the
acceleration is reflected in the mixing widths: the K-¢
model results are consistent with expectations

Mixing layer widths = Results are not shown for K-L, K-L-a,
o — e — and K-L-a-b models

T T
constant
45 off
reversed
40 - accel/decel/accel

] — some versions of K-L and K-L-a-b
model are able to predict g off case

— other cases fail or continue to grow
similarly to constant g case

— C,, = 0 cases tend to fail more than
C,o # 0 cases

N S S S S S N S S S = [ equation does not allow sufficient
Do pe D2 RE e 00 AR 0e stabilizing mechanisms to inhibit
growth of L

Time [s]

all complex g cases have inhibited — in a model with €, = 0, L equation does
mixing layer widths not directly respond to changes in g
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The &-based models generally predict qualitatively
and quantitatively similar mixing widths for
reshocked Richtmyer-Meshkov unstable flow

—

e T S % TR TS B L T N R o S { e T i

Mixing layer width based on 2-98% cutoff in X,

I
K-£-5-&¢
K-£-a :
K-egab——
experiment (£ 10%) —s—1

- Vetter-Sturtevant 7|
Ma- 1-5.9 | _

0.001 0.002 0.003 0.004 0.005 0.006

Time [s]

gis slaved to K, leading to similar v,, and therefore to
similar widths

= Models reasonably well
capture pre- and post-
reshock growth

= g-based models have
steeper post-reshock
growth rates and tend
to overpredict growth

= Adjustments can bring
predictions into closer
agreement

= =~ 0.30 determined by
value of C,, (i.e.,
C,=1.92)
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The L-based models also generally predict
qualitatively and quantitatively similar mixing

widths
Mixing layer width based on 2-98% cutoff in X,

10 T T T I I
0 K‘i'E'EE L '
g K‘i'S‘ES{CLD =0) ——

" Kl-a ——
7+ K-L-a(Cp=0) ——
5 L K-L-a-b
5 K‘i'ﬂ'ﬁ{q{n = 0) .

B experiment (x 10%) ——ma
4 - S R R
3k h(t)~t0% r ;
2 s R LT N Vetter—Sturtevant |
1 : S Ma=150 il
D | ] | | |

0 0.001 0.002 0.003 0.004 0.005

L is slaved to K, leading to similar v,, and therefore to

Time [s]

similar mixing widths

0.006

When run consistently
with g&-based models,
L-based models

— overpredict pre-
reshock widths

— underpredict post-
reshock widths

&- and L-based models
may respond differently
to interaction of reflected
rarefaction with layer

Adjustments can bring
predictions into closer
agreement with data

0~ 0.26 determined by
value of C,, =-0.42
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The K-& model using the standard values C,_, = 1.44 and
C,, = 1.92 predicts the linear growth rate of the v, /v, =
_0.6 Bell-Mehta (1990) air/air shear layer very well

Shear layer width based on 5-95% cutoffin v,
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| = Mean shear momentum equation is

(O ONe e OTus _ O - )aazy
ﬂ;{; rU-?_ f— -_ _ —-_— —_—
P\ ot 0 )T Tor  Tow oz | VT HY gy

= |nitial mean shear velocity is

a0 = BT Bt g [20e =)

2 2
— lower, upper velocities v, =900, v, = 1500 cm/s
— 0. =5 cmis profile width, x. = 125 cm is centerline

= K(x,0) = 0.01(Av)%/2, &(x,0) = K(x,0)3/2/L(x,0) with
L(x,0) = 0.44 cm (boundary layer thickness)

= Self-similar width of air/air shear layer is

h(t) = Gexp |AV| L, Sexp = 0.069

= Following early transient, upper and lower stream
widths are nearly symmetric
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The K-& model using the standard values C,_, = 1.44 and

C,, = 1.92 predicts a K(x;,.)/(Av)? in reasonably good
_agreement with the Bell-Mehta data

Normalized turbulent kinetic energy Shear layer growth parameters
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Using the coefficients derived from the K~ model for
the K-L model gives the correct growth rate but a
K(x..)/(Av)? that is too low and a much larger width

Mixing layer width [cm]
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The turbulent budgets from the K- and K-L model
indicate significant differences in the roles of the
production, destruction, and turbulent diffusion terms

Comparison of K equation budgets £ equation budget
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A multicomponent RANS modeling framework is being
used to investigate the detailed predictions of many
g- and L-based models applied to turbulent mixing

= Predictions were compared for Rayleigh-Taylor mixing

— similarity analysis predicts a constant « for 2- and 4-equation models, and an At-

dependent « for 3-equation models (from b closure model)

— similarity can calibrate each model to a given «

— models attain self-similar growth at slightly different rates

— 2- (but not 3- or 4-) equation models predict reduced widths for stabilizing accelerations
= Predictions were compared for reshocked Richtmyer—-Meshkov mixing

— models predict similar trends before and after reshock

— & or L-based models with algebraic or differential closures for a; predict similar widths
= Predictions were compared for shear flow

— K-&model predicts growth rate and K(x;,.)/(Av)? in good agreement with experiment

— K-L model does not predict both of these quantities well simultaneously

= Applications to:
— canonical flows do not provide evidence that higher order closures are more predictive
— K-gmodel provides best predictions for complex acceleration and shear flows
— assumption &= C,, K¥2/L in L-based models, and L equation itself (having mostly >0 terms
on right side) lead to poor predictions for flows with stabilizing mechanisms or shear
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