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Turbulent Flow CFD Applications Are Many…

o Computational methods to aid in engineering analysis and 
design are pervasive: higher importance in future

o Applications are many:
§ Gaining basic understanding of phenomena
§ Understanding multi-disciplinary interactions
§ Guiding design / optimization
§ Certification by Analysis / reducing margins for design

o Fundamental questions:
§ How do we embed high-fidelity methods in every-day design 

processes?
§ How do we automatically manage errors and uncertainties?
§ How do we leverage future computing power?
§ How do we show industrial relevance?
§ How good is good enough? And when?
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ADL - Main Research Areas
o Multidisciplinary Analysis and Optimization (MDO)

§ Managing tool fidelity / multi-fidelity approaches
§ Design under uncertainty (robust / reliability-based 

design)
§ Hierarchical decomposition methods

o Validation & Verification (V&V) and Uncertainty 
Quantification (UQ)
§ Management of numerical errors
§ Propagation of natural variability uncertainties
§ Understanding of model-form uncertainties

o System/Vehicle-Level Implications
§ Problems are not just at the component level
§ System-level interactions are fundamental
§ Stochastics, interactions, strategic players/actors



Problems of Interest … In Pictures



CFD Vision 2030 Study

o Emphasis on physics-based, predictive modeling
Transition, turbulence, separation, unsteady/time-accurate, chemically-
reacting flows, radiation, heat transfer, acoustics and constitutive models

o Management of errors and uncertainties 
Quantification of errors and uncertainties arising from physical models, mesh 
and discretization, and natural variability

o Automation in all steps of the analysis process
Geometry creation, meshing, large databases of simulation results, 
extraction and understanding of the vast amounts of information

o Harness exascale HPC architectures
Multiple memory hierarchies, latencies, bandwidths, programming paradigms 
and runtime environments, etc.

o Seamless integration with multi-disciplinary analyses 
and optimizations
High fidelity CFD tools, interfaces, coupling approaches, the science of 
integration, etc.
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Predictive Computational Science: V&V and UQ

QoIs

Real world problem

Errors
Uncertainties

Use

Quantifying discretization errors is a first step to quantify sources of uncertainty.
Understanding uncertainties is necessary to achieve certification.

Mathematical Model

Assumptions + Modeling 
⌃⇥

⌃t
+⇥.(⇥u) = 0

⌃⇥u
⌃t

+⇥.(⇥uu) = �⇥p +⇥.⌅

⌃⇥e + k
⌃t

+⇥.(⇥u(e + k)) = �⇥.(pu) +⇥.(u.⌅)�⇥.q

⌃⇥k

⌃t
+⇥.(⇥uk) = Pk �Dk +⇥.((µ + ⇤kµt)⇥k)

⌃⇥⇧

⌃t
+⇥.(⇥u⇧) = P� �D� +⇥.((µ + ⇤�µt)⇥⇧)

⌃⇥Z

⌃t
+⇥.(⇥uZ) = ⇥.(⇥�Z⇥Z)

⌃⇥Z ��

⌃t
+⇥.(⇥uZ ��) = ⇥.(⇥���

Z⇥Z ��)

⌃⇥C

⌃t
+⇥.(⇥uC) = ⇥.(⇥�C⇥C) + ⇥wc

Numerical solution

Discretization



Physical Modeling Issues in Future CFD 
Solvers
o RANS model based:

§ Robustness improvements
§ Speed of convergence (steady and unsteady RANS)
§ Overall simulation cost
§ Complex geometry representation
§ Sensitivities

o Scale-resolving methods:
§ Low-dissipation spatial discretizations
§ Accurate time-stepping methods
§ Subgrid-scale and turbulence models, wall models
§ Sensitivities of unsteady flows! 

o Data-driven solvers:
§ All of the above plus...
§ Rapid embedded querying of “learned” portions of the model
§ Advanced model data decomposition techniques (for very large 

databases)
§ Offline: scalable machine learning tools common to other 

communities



Compute Hierarchy in Hardware
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SIMD processing 



Memory Hierarchy in Hardware
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The Compute-Memory Gap
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The Performance Equation…

o Must tackle all of these elements in order to 
obtain scalable and performant code

o A non-trivial effort … that nobody is interested in!

Realized 
Peformance

(FLOPS)

Number of 
processors= x

Processor Peak 
Performance 
(FLOPS/proc)

x Single processor 
% of peak x Parallel Efficiency

Performance due
to parallelism

Performance due
Single processor + 

Memory management



• These are long-term research issues…

• … but it still takes a significant amount of time before 
we can transition turbulence research/HPC results to 
industrial applications

• We have been doing an “experiment”:

• SU2: Analysis and Design Optimization in Complex 
Configurations

• Are community codes well placed to accelerate the 
transition of turbulence research and HPC 
implementations?

But Progress IS Slow…



The SU2 suite is an open-source 
collection of C++ based software 
for multi-physics simulation and 
design on unstructured meshes 
(i.e., CFD!).

First and foremost: a Community 
code!

SU2 is under active development 
at Stanford University in the 
Department of Aeronautics and 
Astronautics and in many places 
around the world.

http://su2.stanford.edu
https://github.com/su2code/SU2

2015 SU2 Team, "SU2: An Open-Source Suite for Multi-Physics Simulation and Design,” AIAA Journal, 2015, doi: 
10.2514/1.J053813.
2012 SU2 team, "Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-
physics simulation and design", AIAA Paper 2013-0287.
2013 SU2 team, "Stanford University Unstructured (SU2): Open-source analysis and design technology for turbulent flows", AIAA 
Paper 2014-0243.

What is SU2?



SU2 – Multi-Physics Analysis and Design

Since release in Jan. 2012: 500,000+ web visits across 178 countries

10s of thousands of downloads, 15,000+ email addresses on the user list

200+ forks, 170+ developers in list

DDES + FWH

DG-FEM Higher-Order Solver



*includes code in externals/



Now, It Is Not All About Research…HPC!

o Based on several recent experiences:
§ Intel Parallel Computing Center (IPCC) at Stanford
§ Argonne National Lab, Theta Early Science Program (ESP)
§ Argonne National Lab, Aurora Early Science Program (ESP)

o Can community codes also accelerate transition of 
optimized HPC implementations?

o The effort (and knowledge) required to obtain scalable 
and performant CFD codes has increased 
substantially:
§ Large teams with varied expertise now required
§ Expertise rarely resides at Universities any more
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A Tale of Two Solvers In SU2…
o Workhorse of SU2 is a the 2nd order FV 

solver: SU2 FV
§ Unstructured mesh, edge-based
§ Median-dual control volumes
§ Many flux discretizations and reconstructions
§ RANS (SA/SST, DDES variants)

o For the past 2 years, we have been 
developing a DG-FEM solver based on 
the ”same” infrastructure: SU2 DG-FEM
§ Element-wise data structure, arbitrary order
§ Flux computations at faces
§ Higher arithmetic intensity
§ feature_hom, to be released this summer
§ Targeted to LES and WMLES

o Multi-year efforts, jointly with Intel, to 
improve performance and scalability on 
Intel Xeon Phi (KNL) platforms
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Compute Pattern Challenges Optimizations 

Edge-based 
Loops:

capture the actual 
physics of the 

problem (residuals
& Jacobians 
computation)

Partitioning, retaining spatial 
locality
Loop-carried dependencies
Irregular - mem accesses, 
working-sets, write contention

Sparse
recurrences: 
sparse linear

algebra kernels
(Solution Ax = b)

Limited parallelism, extracting 
concurrency 
Large load imbalances
Low arithmetic intensity, BW-
bound
Irregular - mem accesses, 
working-sets

Collectives & Sync Algorithm characteristics, Network bound

Vertex-based
loops Vertex-wise concurrency, Low compute intensity, Bandwidth bound

Compute Patterns in SU2 FV



Utilize all the 
cores

OpenMP, MPI, 
TBB…

Reduce 
synchronization 
events, serial 
code

Improve load 
balancing

Vectorize/SIMD

Unit strided access 
per SIMD lane

Outer-loop 
vectorization

Array notation (:), 
Elemental functions

Efficient 
memory/cache 

use
Reduce working 
sets when 
possible: 
• Reorder 

“sparseness” 
– RCM etc.

• AoS to SoA
Cache Blocking
Prefetching

Hierarchical Parallelism

Fine-Grained Parallelism / within node 
Sub-domain: 1) Multi-level domain decomposition (ex. 2-
levels of METIS calls) 2) Data decomposition (coloring) 

Coarse-Grained / 
multi-node

Domain decomposition

MPI-scaling

Improve load 
balancing

Reduce 
synchronization 
events, all-to-all 
comms

Performance Optimization on Modern Platforms



NASA Trap Wing

LM1021

NASA CRM

NACA 0012

ONERA M6

We are now routinely running large-scale parallel computations with 
5000+ ranks for numerical performance experiments

SU2 Performance Optimization Test Cases



• Edge-loops/Face-loops and Sparse linear algebra – bulk of 
execution time
• Primary overheads: Irregular access, limited parallelism, load-

imbalance

• Imperative to exploit fine-scale concurrency among cores & SIMD
• Sub-domain decomposition vs. data decomposition
• Avoid synchronizations (atomics, barriers…)
• SIMD: Unit-strided memory access, outer-loop vectorization

• Memory optimizations
• Most kernels in FV CFD codes are memory BW bound
• Memory efficient algorithms – RCM reordering
• AoS-to-SoA transformations – Compact working sets
• Prefetching

Key Lessons Learned – SU2 FV Solver



Performance Modelling – How high can we go?
Amdahls’s Law for Multicores

Amdahls’s Law for Vector Multicores
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Performance Modelling – Roofline Model

Attainable Gflops/s = 
min (Peak Gflops/s, Stream BW * flops/byte)



Roofline Model – Crossover Point 
Stream BW * CI = Peak Compute flops/s

Example:    400 * CI = 2000   => CI = 5 

Examples:
a) Stream Triad (DAXPY)
for (i = 0; i < N; ++i) {
z[i] = a*x[i] + y[i];

}
Bytes accessed: 3 * 8 = 24
Flops: 1 + 1 = 2
CI = 2/24 = 0.084

a) Matrix multiplication – C = A x B
(Assume square)

for (i = 0; i < N; ++i) {
for (j = 0; j < N; ++j) {

for (k = 0; k < N; ++k) {
C[i][j] += A[i][k] * B[k][j];

}}}

Bytes accessed: 8*(N*N + N*N + N*N)
Flops: 2*N*N*N
CI =2N3/(24N2) = N/12



SU2 Performance Improvements through:

• Using the cores
• Using SIMD
• Efficiently using the memory



SU2 FV Performance Improvements
Key Optimizations 
performed:

1. Utilizing the Cores fully:
• Hybridized the code with 

MPI+OpenMP
• High-level OpenMP

2. Efficient vectorization:
• Reduced gathers-

scatters in SIMD loops
• Outer-loop vectorization

3. Efficiently using the 
memory:
• AoS-to-SoA layout 

change
• RCM re-ordering

9.26x



Timeline of Performance Improvements



Extracting the Parallelism from the Cores

OpenMP threading – Example from SU2 CFD code

iPoint

jPoint

iEdge
Sparse/indirect 
memory access

Compute (can be 
vectorized if large 
flops present)

Scatter: update 
results at end-points



• Data Decomposition

• Option 1: Basic partitioning with 
atomics – Just use “#pragma omp
parallel for” and use “#pragma omp
atomic” when writing out; Can use 
dynamic scheduling

• Option 2: Coloring or Level 
Scheduling – “Color” edges which can 
be operated on concurrently (no two 
adjacent edges have the same color). 
Do multiple passes. (No need for 
atomics)

Fine-Grained ||ism: Data Vs. Domain 
Decomposition

Edge coloring, Source: Wikipedia



Fine-Grained ||ism: Data Vs. Domain 
Decomposition

Domain Decomposition – Using METIS Library

§ Break graph at edges – Redundant compute on 
interfacial edges. No atomics. Owner thread of the 
boundary point updates the value.
[Cons: Cannot do dynamic thread scheduling]

MPI Domain

METIS 
decomposition

Thread 1

Thread 2



AoS (array-of-structures) to SoA (structures-of-arrays) – Improves 
cache hits, enables contiguous memory access 

Efficiently Using the Memory

class CVariable {

double p;

double u,v,w;

}

CVariable **node;

for (iEdge = 0; iEdge < Nedges; ++iEdge) 

{

iPoint = GetNode(0);

Pres_i = node[iPoint]->p;

Uvel_i = node[iPoint]->u;

}

double *p;

double *u, *v, *w;

for (iEdge = 0; iEdge < Nedges; ++iEdge) 

{

iPoint = GetNode(0);

Pres_i = p[iPoint];

Uvel_i = u[iPoint];

}



Reverse Cuthill-McKee (RCM) re-ordering – Improves cache hits

Efficiently using the Memory

iEdge = 0, iPoint = 0, jPoint = 3731

iEdge = 1, iPoint = 0, jPoint = 83

iEdge = 2, iPoint = 0, jPoint = 1

iEdge = 3, iPoint = 0, jPoint = 84

ONERAM6 mesh

RCM

BW = 170691 BW = 15515

Big jumps in jPoint

iPoint iPoint

jPoint jPoint

iPoint

jPoint

iEdge



Computational / Arithmetic Intensity:

• SU2 FV solver (Roe+limiter+gradient
reconstruction) ~ 1.25 flops / memory 
reference

• SU2 DG-FEM solver (p=4, hexahedra) ~ 14 
flops / memory reference

Computational Intensity of
SU2 FV and DG-FEM Solvers



Remember This Slide?

o Only way in modern hardware to get a significant % 
of peak is through algorithms with higher arithmetic 
intensity

o Difference can be 5-10% to 50-90% of peak

Realized 
Peformance

(FLOPS)

Number of 
processors= x

Processor Peak 
Performance 
(FLOPS/proc)

x Single processor 
% of peak x Parallel Efficiency

Performance due
to parallelism

Performance due
Single processor + 

Memory management



ALCF Aurora Early Science Program
Collaboration Stanford (Lele, Alonso) – Argonne

Benchmark Simulations of Shock-Variable Density Turbulence and Shock-
Boundary Layer Interactions with Applications to Engineering Modeling 

Hydrodynamic phenomena in ICF
capsules, showing flow instabilities

Detailed flow physics must be resolved:
Ideally suited for higher-order schemes

Aircraft in transonic buffet conditions.
Source: Brunet & Deck, 2008.



Pros and Cons of the Methods

Source: Hesthaven and Warburton, 2008

: Not suited
: Suited
: Suited, possibly with modifications, but not the most natural
(or efficient) choice

2nd order:    FVM is the best choice
High order: DG-FEM is the best choice 



Hyperbolic system of PDE’s
Weak formulation
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Nodal DG-FEM: Basic Principles (1)



Contribution from the contour integral
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Nodal DG-FEM: Basic Principles (2)

Solution at the interfaces is multiply defined and discontinuous

Riemann problem: Any approximate Riemann solver can be
used => stabilizes the discretization

1st order DG-FEM equals 1st order FVM!!!



Nonlinear equations and/or curved elements

Nodal DG-FEM: Basic Principles (3)

Integrals must be computed with high-order
quadrature rules to avoid aliasing.

Expensive!!!

Discontinuous basis functions not suited => must be repaired
Even more expensive!!!

However: most operations are local to an element. 
Extremely well-suited for modern computer hardware

Diffusion problems, 2nd derivatives



Implementation in SU2
• Framework of SU2 is very flexible => high-level data 

structures can be used for any solver, so also DG-FEM
• Input parameter structure can be reused entirely
• FVM parallel I/O functionality could be reused (after some 

modifications)
• Still a lot of work was required for other low level functions

• Partitioning of the grid (element wise)
• Preprocessing is completely different from FVM
• Standard elements and standard orientation of elements 

are introduced
• Spatial discretization is completely new

• But can also reuse entire discrete adjoint formulation to 
immediately obtain sensitivities of time-accurate (and 
multi-physics) QoIs



Performance Optimization (1)

• Work still ongoing but nearly complete
• Target architectures: Intel Knights Landing (MIC architecture)

Intel Xeon
• Hybrid MPI/OpenMP parallelization
• MPI

• Domain decomposition (one complete halo layer of elements)
• Overlap computation and communication (including ADER 

scheme)
• Use of persistent communication

• OpenMP
• Aim: Parallelization at for-loop level (sufficient for tests on Xeon)
• Current data structures are designed for this approach

• Optimized BLAS/LAPACK/LIBXSMM functions must be used to 
get good performance for matrix multiplications

• Large contiguous chunks of memory for data storage (not the 
case for the FVM solver)



Performance Optimization (2)
Motivation for hybrid parallelization approach

Flat MPI does not seem to work too well on KNL
Early results on Theta (Argonne)

Elem/Core 122 244 407 1.22K 4.88K 19.5K 39.1K

DOF/Core 4.27K 8.55K 14.2K 42.7K 0.17M 0.68M 1.37M

Efficiency(%) 58.4 70.6 86.6 91.0 99.2 100 N/A



Performance Optimization (2)
Motivation for hybrid parallelization approach

Flat MPI does not seem to work too well on KNL
Early results on Theta (Argonne)

Elem/Core 4 8 15 30 960

DOF/Core 31 62 125 250 8000

Efficiency(%) 46.3 63.9 80.6 83.1 N/A



ADER-DG Schemes Add Complexity…
• MPI Load balancing attempts to 

make sure every partition has 
“similar” amount of work

• But exact load balance cannot be 
achieved a priori

• Solution is to create a list of tasks
• Volume integrals
• Surface integrals
• Multiple steps
• Varying numbers of 

elements/faces

• And assign them to threads as work 
is completed.

• More advanced techniques are also 
possible



Performance Optimization (3)
Empirical estimation of workload across

different element types for Navier-Stokes simulation

• Accurate estimate of workload for each element type is necessary 
for load balancing, especially in ADER implementation

• Time accurate local time stepping (ADER) uses load balancing 
that is dependent on the speed of execution of volume and 
surface computations in each type (and order) of elements





Performance Optimization (4)
Speed-up by using intel MKL

• In initial testing, use of libXSMM provides additional performance 
improvements

• Tests ongoing on Theta 



Strong Scaling Test – 3D SD7003 Airfoil

Elem/Rank 0.25M 0.12M 30.7K 7.68K 1.92K 480 120 30

DOF/Rank 30.7M 15.4M 3.84M 0.96M 0.24M 60K 15K 3.75K

Efficiency(%) N/A 99.98 97.15 90.89 93.39 90.49 85.07 77.86



DG-FEM Solver Performance on KNL



What About Managing the Numerical Error?

o Functional-based error 
estimation / adaptation 
theory has been around 
for a while

o In a few years this 
problem will be solved 
and commercial solvers 
will incorporate these 
capabilities

o We have teamed up 
with INRIA and are 
using their mesh 
adaptation library

o Will we also be able to 
manage the 
uncertainties 
simultaneously?  This is 
the grand challenge
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Conclusions & Ongoing Work

o Optimized CFD solvers for new computing platforms 
require significant effort and expertise

o Scientists and engineers should focus on doing engineering 
and science: turbulence modeling and others

o Performance / scalability optimization expertise is quickly 
disappearing in academe

o Multi-disciplinary teams are needed…and hard to come by

o Must amortize the effort over a larger base of users

o Community codes may be an answer: high-performance 
out of the box
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