Modern CFD Validation for Turbulent Flow Separation on Axisymmetric Afterbodies

Dr. Kevin Disotell

Postdoctoral Fellow Flow Physics and Control Branch NASA Langley Research Center kevin.j.disotell@nasa.gov

Dr. Christopher Rumsey

Senior Research Scientist Computational AeroSciences Branch NASA Langley Research Center

U. Michigan/NASA Symposium on Advances in Turbulence Modeling Session D: Experiments Ann Arbor, Michigan / 12 July 2017 | **APPROVED FOR PUBLIC RELEASE**

Supported by:

- Transformational Tools and Technologies (TTT) Project, Transformative Aeronautics Concepts Program
- NASA Postdoctoral Program, administered by Universities Space Research Association (USRA)

NASA Langley Research Center 1917-2017

Outline

- 1. Test Case Motivation
- 2. A Priori RANS Guidance
- 3. Risk-Reduction Test Setup
- 4. Summary and Future Work
- 5. Questions and Answers

Motivation: NASA CFD Vision 2030^[1]

(New Orleans, 2012) NASA Common Research Model

- Need for improved CFD modeling/validation of smooth-body turbulent flow separation
- Need for fundamental experiments designed specifically for CFD validation
- Support range of cases:

attached flow → partially separated → large separation

•

Waisted Body-of-Revolution (1970)

Axisymmetric Converging Flow with APG^[2]

- Example of higher-Re test case
- Analogy to cambered delta wing
- Turbulence modeling issues in "waist" region
- Mainly considered attached flow
- RAE 8 × 8 ft Wind Tunnel: 0.6 < M < 2.8; 5 × 10⁶ < Re₁ < 2 × 10⁷

^[2] Winter, K.G., Rotta, J.C., and Smith, K.G., 1970, "Turbulent Boundary Layer Studies on a Waisted Body of Revolution in Subsonic and Supersonic Flow," R&M No. 3633.

Test Case Concept: NASA Axisymmetric Afterbody

- Axisymmetric: no intersection
 with sidewall corner flows
- Wider validation domain: sting-mount to access higher Reynolds number facilities

- Parametric body:
 - Analytical shape; continuous second derivative
 - Extendable forebody
 - Interchangeable afterbody (cf. Presz and Pitkin ^[3])

^[3] Presz, W.M., and Pitkin, E.T., "Flow Separation Over Axisymmetric Afterbody Models," *J. Aircraft,* Vol. 11, No. 11, 1974, pp. 677-682.

Family of Afterbodies

Axisymmetric Afterbody: Industry-Relevant Configuration

^[4] Allan, B.G., and Schaeffler, N.W., "Numerical Investigation of Rotorcraft Fuselage Drag Reduction using Active Flow Control," Proceedings of American Helicopter Society 67th Annual Forum, Virginia Beach, VA, May 3-5, 2011.

Outline

- 1. Test Case Motivation
- 2. A Priori RANS Guidance
- 3. Risk-Reduction Test Setup
- 4. Summary and Future Work
- 5. Questions and Answers

- Determine boattail angle where turb. model results are ambiguous
 - Searching for a discriminating test case
- Compute risk-reduction configuration with tunnel walls
 - NASA Langley 15-Inch Low-Speed Wind Tunnel (15x15 inch cross-section)
 - Approximate square test section by circle that inscribes it
 - Steady RANS
 - Fully turbulent
- Assess sensitivity of afterbody flow to:
 - 1. Body nose (with/without)
 - 2. Tunnel boundary layer (with/without)

Representative Flowfields: SA-RC Turbulence Model

Pressure Distribution: *Turbulence Model Differences*

Boattail Skin Friction: Turbulence Model Differences

 C_{f}

Boattail Skin Friction: *Turb. Model* + *Nose Effects*

Boattail Skin Friction: Effect of Tunnel Boundary Condition

Outline

- 1. Test Case Motivation
- 2. A Priori RANS Guidance
- 3. Risk-Reduction Test Setup
- 4. Summary and Future Work
- 5. Questions and Answers

Risk-Reduction Experimental Setup: NASA Langley 15-Inch LSWT

- Development of new CFD validation test case for smooth-body turbulent separation based on parametric body-of-revolution.
- Design guided by *a priori* RANS studies searching for critical disagreement among turbulence models.
- Assessment of sensitivity to:
 - 1. body nose (with/without)
 - 2. tunnel wall boundary layer (with/without)

in which effects were smaller than overall disagreement among models.

• Must now pursue "truth case": Appear to be twin paths for experiment (nose-body) and LES/DNS (nose-less body).

CELEBRATING

