Modern CFD Validation for Turbulent Flow Separation on Axisymmetric Afterbodies

Dr. Kevin Disotell
Postdoctoral Fellow
Flow Physics and Control Branch
NASA Langley Research Center
kevin.j.disotell@nasa.gov

Dr. Christopher Rumsey
Senior Research Scientist
Computational AeroSciences Branch
NASA Langley Research Center

U. Michigan/NASA Symposium on Advances in Turbulence Modeling
Session D: Experiments
Ann Arbor, Michigan / 12 July 2017 | APPROVED FOR PUBLIC RELEASE

Supported by:
• Transformational Tools and Technologies (TTT) Project, Transformative Aeronautics Concepts Program
• NASA Postdoctoral Program, administered by Universities Space Research Association (USRA)

www.nasa.gov
Outline

1. Test Case Motivation
2. A Priori RANS Guidance
3. Risk-Reduction Test Setup
4. Summary and Future Work
5. Questions and Answers
Motivation: NASA CFD Vision 2030

- Need for improved CFD modeling/validation of smooth-body turbulent flow separation
- Need for fundamental experiments designed specifically for CFD validation
- Support range of cases:
 - attached flow \rightarrow partially separated \rightarrow large separation

Axisymmetric Converging Flow with APG\(^2\)

- Example of higher-\(Re\) test case
- Analogy to **cambered delta wing**
- Turbulence modeling issues in “waist” region
- Mainly considered attached flow
- RAE 8 × 8 ft Wind Tunnel:
 \[0.6 < M < 2.8; \ 5 \times 10^6 < Re_L < 2 \times 10^7\]

Test Case Concept: NASA Axisymmetric Afterbody

- **Axisymmetric:** no intersection with sidewall corner flows
- **Wider validation domain:** sting-mount to access higher Reynolds number facilities

- **Parametric body:**
 - Analytical shape; continuous second derivative
 - Extendable forebody
 - Interchangeable afterbody *(cf. Presz and Pitkin [3]*)

Family of Afterbodies

Decreasing Aft Cylinder Radius
“Slip-Ons”

cf. NASA TN D-4504 (1968)

“Attached Flow”

“Incipient Separation”

“Fully Separated”

Disotell and Rumsey | UMich/NASA Symposium on Advances in Turbulence Modeling
Axisymmetric Afterbody: Industry-Relevant Configuration

“Hammerhead” Launch Vehicle Buffeting (NASA Ames)

Helicopter Aft-Fuselage Drag Reduction (Allan and Schaeffler [4])

Aeropropulsion: Nozzle Afterbodies

Outline

1. Test Case Motivation
2. *A Priori* RANS Guidance
3. Risk-Reduction Test Setup
4. Summary and Future Work
5. Questions and Answers
• Determine boattail angle where turb. model results are ambiguous
 – Searching for a discriminating test case

• Compute risk-reduction configuration with tunnel walls
 – NASA Langley 15-Inch Low-Speed Wind Tunnel (15x15 inch cross-section)
 – Approximate square test section by circle that inscribes it
 – Steady RANS
 – Fully turbulent

• Assess sensitivity of afterbody flow to:
 1. Body nose (with/without)
 2. Tunnel boundary layer (with/without)
Representative Flowfields: SA-RC Turbulence Model

\[M_{\text{inflow}} \sim 0.12 \]
\[Re_{R_{\text{max}}} \sim 180k \]

No separation on outer wall

Similar Flow Behavior
Pressure Distribution: *Turbulence Model Differences*

\[N = \text{Nose Body} \]

- Fully converged + residuals below 10^{-15}
- Peak C_p agreement, followed by boattail discrepancies
Pressure Distribution: *Turb. Model + Nose Effects*

\[\frac{\sigma(C_{p,peak})}{\langle C_{p,peak} \rangle} < 1\% \]

Full Reynolds Stress Models (RSM): Computed on \(\frac{1}{4} \)-plane nose-less domains
Boattail Skin Friction: *Turbulence Model Differences*

Disotell and Rumsey | UMich/NASA Symposium on Advances in Turbulence Modeling

Graph:

- **Axes:**
 - $R(x)$ vs. x/L_B
 - C_f vs. x/L_B

- **Legend:**
 - SA-neg (N)
 - SA-RC (N)
 - SST (N)
 - Wilcox2006 (N)
 - k-kL-MEAH2015 (N)

- **Note:**
 - $[N = \text{Nose Body}]$

Text:

- Attached
- Separated

- **Key Points:**
 - SA vs. SA-RC
 - SA-RC indicates barely-reversed flow, while SST barely **fails** to show reversed flow
Boattail Skin Friction: \textit{Turb. Model + Nose Effects}

\[R(x) \]

C_f vs x/L_B

- Attached
- Reversed

\[[N = \text{Nose Body}] \]
\[[NL = \text{Nose-Less Body}] \]

- SA-neg (NL)
- SA-neg (N)
- SA-RC (NL)
- SA-RC (N)
- SST (NL)
- SST (N)
- Wilcox2006 (NL)
- Wilcox2006 (N)
- k-kL-MEAH2015 (NL)
- k-kL-MEAH2015 (N)
- SSG-LRR-RSM-w2012 (NL)
- WilcoxRSM-w2006 (NL)

- \textit{RSM differences}
Boattail Skin Friction: *Effect of Tunnel Boundary Condition*

![Graph showing skin friction coefficients for various tunnel boundary conditions.](image)

- **$R(x)$**
- **C_f**
- **x/L_B**

Legend:
- SA-neg (slip tunnel)
- SA-neg (no-slip tunnel)
- SA-RC (slip tunnel)
- SA-RC (no-slip tunnel)
- SST (slip tunnel)
- SST (no-slip tunnel)
- Wilcox2006 (slip tunnel)
- Wilcox2006 (no-slip tunnel)
- k-kL-MEAH2015 (slip tunnel)
- k-kL-MEAH2015 (no-slip tunnel)

[Note: Body Only]

Disotell and Rumsey | UMich/NASA Symposium on Advances in Turbulence Modeling
Outline

1. Test Case Motivation
2. A Priori RANS Guidance
3. Risk-Reduction Test Setup
4. Summary and Future Work
5. Questions and Answers
Risk-Reduction Experimental Setup: NASA Langley 15-Inch LSWT

Test Model

Sting Support

Undercarriage (Pitch & Yaw Adjustments)

Flow

1 ft (30.48 cm)
Risk-Reduction Test Model Assembly
(Courtesy: Vincent LeBoffe, NASA LaRC)

- Integrated Sting Connection
- Sting Support
- Model Roll Indexer
- Undercarriage (Pitch & Yaw Adjustments)
- Floor Plate

(Useful for rotating point-sensors around circumference)
Summary and Future Work

- Development of new CFD validation test case for smooth-body turbulent separation based on parametric body-of-revolution.
- Design guided by *a priori* RANS studies searching for critical disagreement among turbulence models.
- Assessment of sensitivity to:
 1. body nose (with/without)
 2. tunnel wall boundary layer (with/without)

 in which effects were smaller than overall disagreement among models.

- Must now pursue “truth case”: Appear to be twin paths for experiment (nose-body) and LES/DNS (nose-less body).