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Data-enabled	turbulence	modeling	:	Progress	and	
Challenges



What	do	we	expect	from	data-driven	modeling?

Let’s	start	with	a	brief	history	of	a	success	story:	Machine	Translation



New	York	Herald	Tribune:	8	January	1954

It's	all	done	by	machine	:	Words	go	in	in	Russian,	English	sentence	comes	out	

A	huge	electronic	“brain”	with	a	250-word vocabulary	translated	mouth-filling	Russian	
sentences	yesterday	into	simple	English	in	less	than	ten	seconds.	

Once	the	Russian	words	were	fed	to	the	machine	no	human	mind	intervened.	In	
demonstrating	this	feat	for	the	first	time	scientists	of	the	IBM	and	Georgetown,	said	
they	hoped	that	within	a	few	years	such	machines	would	be	freely	translating	all	
languages.	

At	the	demonstration,	an	I.B.M.	mathematician,	fed	into	the	machine,	filling	a	room	as	
big	as	a	tennis	court,	a	series	of	cards	carrying	the	Russian	sentence:	
“Myezhdunarodnoye ponyimaniye yavlyatetsya vazhim faktorom vryesnyenyiyi
polytyichyeskyix voprosov.”	

The	machine	blinked	its	lights,	was	quiet	for	a	moment	as	if	thinking	and	within	nine	
seconds	the	automatic	typewriter	clacked	and	out	came:	“International	understanding	
constitutes	an	important	factor	in	decision	of	political	questions.”



New	York	Herald	Tribune:	8	January	1954	(Contd..)

Even	though	the	machine	can	translate	such	complex	sentences,	it	is	limited	by	
its	vocabulary,	and	by	its	“knowledge”	of	grammar,	according	to	Dr.Dostert.

Dr.Dostert said	that	it	will	not	be	too	long	– possibly	three	to	five	years – when	
automatic	text-reading	machines	will	feed	in	Russian	sentences	automatically	
into	the	machines	without	punched-card	intervention.	

Then,	Dr.Dostert said,	complete	libraries	of	Western	technical	works	could	be	
made	available	to	non-industrial	nations.	“At	present,”	he	added,	“we	are	at	
the	‘Kitty	Hawk’	state.”



What	happened	after	that? Cls-communications.com



The big leap : Google Translate

Before	september 2016	:	phrase-based translation. - mapping roughly equivalent words and 
phrases without an understanding of linguistic structures can only produce crude results.

After september 2016 : Zero-shot translation: Learned	how	to	make	educated	guesses	
about	the	content,	tone,	and	meaning	of	phrases	based	on	the	context	of	other	words	and	
phrases	around	them.	Google	Translate invented	its	own	language to	help	it	translate	more	
effectively.

A	neural	computing	system	designed	to	translate	content	from	one	human	language	into	
another	developed	its	own	internal	language	to	make	the	task	more	efficient.

Gil	Fewster,	Medium.com



- An	English-language	article	from	Fox	Business
- A	selection	from	Thomas	Friedman’s	 Thank	You	For	Being	Late, also	in	English.
- Part	of	a	Korean-language	opinion	column	from writer	Kim	Seo-ryung.
- A	selection	of	the	Korean	novelMothers	and	Daughters, by Kang	Kyeong-ae

Google’s	translations	scored	a	28	out	of	60	possible	points ;	Systran scored	17	out	of	60.

The	humans,	on	the	other	hand,	scored	much	better,	with	a	high	score	of	49	out	of	60.

“the	machines	were	much	faster.	They	delivered	their	translations	in	just	a	few	minutes,	
while	the	human	translators	took	almost	an	hour”

“No	matter	how	fast	the	translation	programs	are,	many	will	doubt	they	can	perfectly	
translate	subtle	expressions	of	emotion	in	literature.	We	hope	the	event	shows	the	relative	
strengths	and	weaknesses	of	AI	translation	programs	and	human	experts.”

Alison	Kroulek,	K-international.com



Human	translation	accuracy



Other	examples	:	Face	recognition

Data

Predictive	
capability

Mathematical	model	
+Machine	Learning

• No	physical	law	;
• Data	is	directly	

useful	for	model;
• Large	amounts	of	

relevant	data.



Data	deluge…
• DNS	and	LES	have	been	
produced	in	quantity	
• Experimental	PIV	and	MRV	
high-res	data	sets	

• Data	sets	have	not had	a	substantial	impact	
on	closure	modeling



Discovering	equations	from	data



Outline

• What	can	we	learn	from	other	fields	?
• Turbulence	modeling	,	data	&	tools
• Progress	in	data-driven	turbulence	modeling
• Innovative	ways	of	using	data
• Perspectives



Can	we	replicate	this	type	of	success	in	turbulence	modeling?
Data

Predictive	
capability

Physical	model	+	Physics	
constraints	+	Machine	

Learning



Challenges

Predictive	
capability

• Data	contains	real	quantities;	Model	
contains	“modeled”	quantities	(loss	of	
consistency	is	severe	in	turbulence	
models)
è k	and	in	the	model	are	not	the	k	

and	eps	in	DNS

• Data	will	be	only	loosely	connected	to	
model	(and	not	objective)
è How	to	improve	a	turbulence	

model	if	we	only	have	pressure	
measurements	(or	images)?

• Data	will	be	noisy	and	of	variable	
quality,

• Inherent	uncertainty

Data

Physical	model	+	Physics	
constraints	+	Machine	

Learning



Turbulence	models		

• One	- seven	transport	eqns,	and	up	to		30	adjustable	constants.
• Modeling	rests	on	large	amounts	of	intuition	and	luck,	in	spite	of	

starting	with	a	“rigorous”	approach	
• Theories	abound	for	parts	of	model,	but	not	for	output
• Model	constants	calibrated	on	very	limited	data
• Greater	sophistication	in	RANS	models,	with	mixed	degree	of	success

è More	constants	to	fit	,	still	use	canonical	problems



Turbulence	modeling	
discrepancies

• Balance	between	the	terms	matters	most	(and	not	accuracy	of	
individual	terms)

è Still	respect	invariance,	symmetries,	etc.
• Many	“seemingly	physical”	quantities	are	just	operational	variables

è Use	of	apriori analysis	is	of	limited	utility
• There	is	no	beautiful	turbulence	model	waiting	to	be	discovered	

è Look	for	optimal	model,	conditional	on	data	&	constraints?



Embedded	invariance

Ling	et	al	(2016)																																				:	Algebraic	RSM	functions

Ling	et	al.,	JFM	2016.

ML	algorithm	embeds	rotational	
invariance	by	enforcing	that	the	
predicted	anisotropy	tensor	lies	on	a	
basis	of	isotropic	tensors.



Inference

Forward	
problem

Inverse
problem



Machine	Learning
Supervised	Learning:		Given	a	set	of	labeled	data	{xi,yi},	learn	the	
mapping	y(x)

Unsupervised	Learning:	Given	data,	discover	patterns	and	groupings

Typically	cast	in	a	probabilistic	framework	è Deep	connections	with	
statistical	mechanics

GPML



Outline

• What	can	we	learn	from	other	fields	?
• Turbulence	modeling	,	data	&	tools
• Progress	in	data-driven	turbulence	modeling
• Innovative	ways	of	using	data
• Perspectives



Turbulence	models

NSE

RANS

RANS	+	model



Parameter	inference	/	calibration

Cheung,	et	al.	(2011):		Bayesian uncertainty	analysis	with	applications	to	turbulence	modeling
W.	N.	Edeling (2014):		Bayesian	estimates	of	parameter	variability	in	the
k–ε turbulence	model
Ray,	et	al.	(2014):		Bayesian	calibration	of	a	k–ε turbulence	model	for	predictive	jet-in-crossflow	
simulations,	2015.



Structural	discrepancy	using	machine	learning

Tracey,	Duraisamy,	Alonso	(2013)						:	Reynolds	stress	anisotropy	eigenvalues
Xiao	et	al	(2016)																																				:	Reynolds	stress	anisotropy	eigenvalues	&	eigenvectors
Ling	et	al	(2016)																																				:	Algebraic	RSM	functions
Weatheritt (2016)																																	:	Evolutionary	algorithms	to	extract	Non-linear	stress	strain
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Wang	et	al.,	CTR	Summer	program	2016.



Structural	discrepancy	using	machine	learning

Tracey,	Duraisamy,	Alonso	(2013)						:	Reynolds	stress	anisotropy	eigenvalues
Xiao	et	al	(2016)																																				:	Reynolds	stress	anisotropy	eigenvalues	&	eigenvectors
Ling	et	al	(2016)																																				:	Algebraic	RSM	functions
Weatheritt (2016)																																	:	Evolutionary	algorithms	to	extract	Non-linear	stress	strain

Picture	courtesy	of	Qiqi wang



Inversion	and	spatial	mapping	of	discrepancy	in	eddy	
viscosity
Dow	and	Wang	(2012)



Field	inversion	+	machine	learning
Duraisamy	et	al.	(2014)																								:	Inversion	and	machine	learning	
Tracey,	Duraisamy,	Alonso	(2015)							:	Machine	learning	+	embedding	
Duraisamy	(2016)																																		:	Inference	+	machine	learning	+	embedding



Field	Inversion	+	Machine	learning	to	
Augment	Physics-based,	Consistent	Models

Data

Predictive	
capability

Physical	model	+	Inference

Machine	learning

Physical	model	+	consistent	
augmentation

• Data	contains	real	quantities;	Model	
contains	“modeled”	quantities	(loss	of	
consistency		is	bad	in	turbulence	
models)
è Inference	connects	real	quantities	

to	modeled	ones

• Data	will	be	only	loosely	connected	to	
model	(and	not	objective)
è Inference	connects	secondary,	

non-objective	data	to	model	quantites

• Data	will	be	noisy	and	of	variable	
quality,	inherent	uncertainty
è Probabilistic	casting	of	inference	

and	learning



Outline

• What	can	we	learn	from	other	fields	?
• Turbulence	modeling	,	data	&	tools
• Progress	in	data-driven	turbulence	modeling
• Innovative	ways	of	using	data
• Perspectives



Quantitative	information	on	model	inadequacy

Modeler	knows	what	is	wrong,	quantitatively



What	does	a	sub-model	require?

Durbin	bypass	transition	model

Optimal	intermittency	field

Optimal	intermittency	function	
vs.	model	prediction



Improving	the	value	of	
data!

Ability	to	work	on	sparse	amount	of	data	is	
critical



Sanity	check	:	Are	we	getting	answers	for	the	right	reasons?

Use	pressure	data	for	inference,	check	if	Reynolds	stresses	are	correct



What	are	the	right	features?		

Wang,	Wu,	Xiao,	PRF	2017.



Embedded	invariance

Ling	et	al.,	JFM	2016.

ML	algorithm	embeds	rotational	
invariance	by	enforcing	that	the	
predicted	anisotropy	tensor	lies	on	a	
basis	of	isotropic	tensors.
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Singh	&	Duraisamy,	PoF 2016

Parish	&	Duraisamy,	Aviation	2014

Singh	&	Duraisamy,	Scitech 2016

Duraisamy,	
SIAM	2016

It	is	really	a	set	of	ideas



Application	to	RSMs



Application	to	RSMs



True	prediction	!

Inference	used	only	CL	data,	NN-augmented	model	provides	
considerable	predictive	improvements	of	Cp

S	809,	Re=2	Million



Variability
α=0

α=14 α=20

Training	from	different	
sets	

S	809,	Re=2	Million



Portability	:	
Implementation	in	AcuSolve

S809	Airfoil	:	Predictive	results	in	Commercial	CFD	solver



Growing	community	for	data-driven	turbulence	modeling

2011:	Cheung,	Moser,	et	al	(parametric	UQ)
2012:	Dow	&	Wang	(non-parametric	UQ)
2013:	Tracey,	Duraisamy,	Alonso	(ML	for	non-parametric	UQ)
2014:	Duraisamy	et.	(Inversion	+	ML	for	model	improvement)
2015:	Ling	&	Templeton, Weatheritt &	Sandberg	(apriori ML)
2016:	Xiao	et	al.	(ML	for	model	improvement)
2017:	Mishra,	Iaccarino,	Edeling (physics,	data-based)

Also,	Dwight,	Cinella,	Arunjatesan et	al.,	
Companies:	Altair,	Inc.	;	UTRC;	xxxx;	yyyy



Perspectives	1/2

• “Kitty	hawk”	state,	much	work	remains
• Be	careful	about	what	data	we	can	use	for	calibration	and	how	we	

can	use	it
• Machine	learning	

è Can	function	as	indicator
è Is	an	optional	step
è Can	be	fed	by	theory	and	asympotics

• If	there	is	an	underlying	“exact”	model,	we	can	discover	it
• There	is	no	(and	will	ever	be	a)	universally	accurate	model	waiting	

to	be	discovered
è Optimal	model,	conditional	on	data	and	assumptions	possible
è Avoid	tendency	to	overfit
è Small	number	of	sensible	features	(Galilean	invariant)
è Absolutely	the	most	sensible	thing	to	do	in	an	industrial	setting	

(Lots	of	data	for	a	class	of	problems,	Lots	of	expertise/knowhow)



Perspectives	2/2

• Modeling	has	ALWAYS	been	data-driven	&	we	have	always	been	using
machine	learning	(and	inversion	too)

• Data-driven	approach	is	not	a	substitute	to	turbulence	modeling

• Data-driven	approach	is	not	a	new	way	of	modeling.	It	is	a	new	tool.

• Uses	(other	than	prediction):
èModel	credibility:	Can	validate/invalidate	model	structures
è Uncertainty	quantification:	Can	obtain	modeling	error	bounds
è Robust	design
è Feature	selection
è Input	for	modeler	(forget	machine	learning)



Vision	for	the	future
A	continuously	augmented	curated	database	/	website	of	inferred	
corrections	that	are	input	to	the	machine	learning	process

Users	upload/download/process	data,	generate	maps.



”LES	accuracy”
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Backups



Discovering	equations	from	data



Discovering	equations	from	data



Discovering	equations	from	data



Discovering	equations	from	data



Preliminary	Results	– S809	Airfoil,	Re	=	2	x	106

• Excellent	agreement	between	ML-γ and γ-Reθ models
– Sanity	check	– ANN	tested	on	same	data	as	on	which	it	was	trained

Skin	friction	coefficient

AoA =	00



Preliminary	Results	– S809	Airfoil,	Re	=	2	x	106

• Excellent	agreement	between	ML-γ and γ-Reθ models
– Sanity	check	– ANN	tested	on	same	data	as	on	which	it	was	trained

AoA =	50 AoA =	100



Preliminary	Results	– S809	Airfoil,	Re	=	2	x	106

• Excellent	agreement	between	ML-γ and γ-Reθ models
– ANN	tested	on	new	data

AoA =	30 AoA =	70



Aerospatiale-A		Airfoil,	Re	=	2.1	x	106

Skin	friction	coefficient

AoA =	00

AoA =	13.10

• Excellent	agreement	between	ML-γ and γ-Reθ models
– ANN	tested	on	new	data



VA-2	Airfoil,	Re	=	2.0	x	106

• Good	agreement	between	ML-γ and γ-Reθ models
– ANN	tested	on	new	data

AoA =	3.50 AoA =	11.50



Introducing	discrepancies
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Singh	&	Duraisamy,	PoF 2016

Parish	&	Duraisamy,	Aviation	2014

Singh	&	Duraisamy,	Scitech 2016

Duraisamy,	
SIAM	2016



: 

k-ω model
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� Introducing	discrepancies	in	
stress	perturbations

Barycentric map	
perturbations:
Iaccarino ‘12
Duraisamy	‘13
Xiao	‘15



Prediction	with	Machine-Learning	Injection	(Reτ =	
950)

⌘ = {Sk/✏, P/✏, y
p
k/⌫}


