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What do we expect from data-driven modeling?

Let’s start with a brief history of a success story: Machine Translation
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New York Herald Tribune: 8 January 1954

It's all done by machine : Words go in in Russian, English sentence comes out

A huge electronic “brain” with a 250-word vocabulary translated mouth-filling Russian
sentences yesterday into simple English in less than ten seconds.

Once the Russian words were fed to the machine no human mind intervened. In
demonstrating this feat for the first time scientists of the IBM and Georgetown, said
they hoped that within a few years such machines would be freely translating all
languages.

At the demonstration, an I.B.M. mathematician, fed into the machine, filling a room as
big as a tennis court, a series of cards carrying the Russian sentence:
“Myezhdunarodnoye ponyimaniye yavlyatetsya vazhim faktorom vryesnyenyiyi
polytyichyeskyix voprosov.”

The machine blinked its lights, was quiet for a moment as if thinking and within nine
seconds the automatic typewriter clacked and out came: “International understanding
constitutes an important factor in decision of political questions.”



New York Herald Tribune: 8 January 1954 (Contd..)

Even though the machine can translate such complex sentences, it is limited by
its vocabulary, and by its “knowledge” of grammar, according to Dr.Dostert.

Dr.Dostert said that it will not be too long — possibly three to five years — when
automatic text-reading machines will feed in Russian sentences automatically
into the machines without punched-card intervention.

Then, Dr.Dostert said, complete libraries of Western technical works could be
made available to non-industrial nations. “At present,” he added, “we are at

the ‘Kitty Hawk’ state.”



What happened after that?

Cls-communications.com

ALPAC and its aftermath:

Alpac published a report on MT
concluding that years of research
haven't produced useful results.

. The outcome was a halt in federal
The pioneers:

) ) ) funding for machine translation. The 1990s:
First public demonstratmn However, research went on in A group from IBM published the
of computer trar\slat!on at Canada, France and Germany. results of experiments on a system
Georgetown University o based purely on statistical methods.

during the Cold War:

. . At the same time, Japanese groups
Russian into English.

began to use methods based on a

body of translation examples.
o

The 1980s: @

This era witnessed the emergence of
e o The dominan strategy was the of Recent years: ©
Research was inspired by g ‘indirect’ translationg\?ila intermediar The use of MT and translation
contemporary developments in . Y aids by large corporations has
linguistics, particularly in representations.

grown rapidly. Research is
ongoing in both statistical and
rule-based machine translation.

models of formal grammar.
There were some operational
systems, but the quality of
output was disappointing.



The big leap : Google Translate

Before september 2016 : phrase-based translation. - mapping roughly equivalent words and
phrases without an understanding of linguistic structures can only produce crude results.

After september 2016 : Zero-shot translation: Learned how to make educated guesses
about the content, tone, and meaning of phrases based on the context of other words and

phrases around them. Google Translate invented its own language to help it translate more
effectively.

A neural computing system designed to translate content from one human language into
another developed its own internal language to make the task more efficient.

Gil Fewster, Medium.com




Human Translation Vs Machine Translation: Competition

- An English-language article from Fox Business

- A selection from Thomas Friedman’s Thank You For Being Late, also in English.
- Part of a Korean-language opinion column from writer Kim Seo-ryung.

- A selection of the Korean novel Mothers and Daughters, by Kang Kyeong-ae

Google’s translations scored a 28 out of 60 possible points ; Systran scored 17 out of 60.
The humans, on the other hand, scored much better, with a high score of 49 out of 60.
“the machines were much faster. They delivered their translations in just a few minutes,

while the human translators took almost an hour”

“No matter how fast the translation programs are, many will doubt they can perfectly
translate subtle expressions of emotion in literature. We hope the event shows the relative
strengths and weaknesses of Al translation programs and human experts.”

Alison Kroulek, K-international.com




Human translation accuracy



Other examples : Face recognition

Data

Mathematical model
+Machine Learning

Predictive
capability

No physical law ;
Data is directly
useful for model;
Large amounts of
relevant data.



Data deluge...

 DNS and LES have been
produced in quantity
 Experimental PIV and MRV
high-res data sets
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main96
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* Data sets have not had a substantial impact
on closure modeling




Discovering equations from data
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Outline

What can we learn from other fields ?
Turbulence modeling , data & tools

Progress in data-driven turbulence modeling
Innovative ways of using data

Perspectives



Can we replicate this type of success in turbulence modeling?
Data

Physical model + Physics
constraints + Machine
Learning
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Challenges
Data

;

Physical model + Physics
constraints + Machine
Learning

Predictive
capability

Data contains real quantities; Model
contains “modeled” quantities (loss of
consistency is severe in turbulence
models)

=» k and in the model are not the k
and eps in DNS

Data will be only loosely connected to
model (and not objective)

=» How to improve a turbulence
model if we only have pressure
measurements (or images)?

Data will be noisy and of variable
quality,

Inherent uncertainty



Turbulence models
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* One - seven transport egns, and up to 30 adjustable constants.
* Modeling rests on large amounts of intuition and luck, in spite of
starting with a “rigorous” approach
* Theories abound for parts of model, but not for output
* Model constants calibrated on very limited data
* Greater sophistication in RANS models, with mixed degree of success
=» More constants to fit, still use canonical problems



Turbulence modeling
discrepancies
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e Balance between the terms matters most (and not accuracy of
individual terms)
=>» Still respect invariance, symmetries, etc.
 Many “seemingly physical” quantities are just operational variables
=>» Use of apriori analysis is of limited utility
* There is no beautiful turbulence model waiting to be discovered
=>» Look for optimal model, conditional on data & constraints?



Turbulence models — inherent uncertainty
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Forward
problem

Inference

:

Inverse
problem

<:| ﬂdata; R()




Machine Learning

Supervised Learning: Given a set of labeled data {x,y.}, learn the
mapping y(x)

Unsupervised Learning: Given data, discover patterns and groupings

Typically cast in a probabilistic framework =» Deep connections with
statistical mechanics

GPML

~1 0 1
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Turbulence modeling , data & tools

Progress in data-driven turbulence modeling
Innovative ways of using data
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Turbulence models
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Parameter inference / calibration
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Cheung, et al. (2011): Bayesian uncertainty analysis with applications to turbulence modeling
W. N. Edeling (2014): Bayesian estimates of parameter variability in the

k—€ turbulence model

Ray, et al. (2014): Bayesian calibration of a k—e turbulence model for predictive jet-in-crossflow
simulations, 2015.



Structural discrepancy using machine learning

Tracey, Duraisamy, Alonso (2013) : Reynolds stress anisotropy eigenvalues

Xiao et al (2016) : Reynolds stress anisotropy eigenvalues & eigenvectors
Ling et al (2016) : Algebraic RSM functions

Weatheritt (2016) : Evolutionary algorithms to extract Non-linear stress strain

ou
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Structural discrepancy using machine learning

Tracey, Duraisamy, Alonso (2013) : Reynolds stress anisotropy eigenvalues

Xiao et al (2016) : Reynolds stress anisotropy eigenvalues & eigenvectors
Ling et al (2016) : Algebraic RSM functions

Weatheritt (2016) : Evolutionary algorithms to extract Non-linear stress strain
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Inversion and spatial mapping of discrepancy in eddy

viscosity
Dow and Wang (2012)
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Field inversion + machine learning

a=20°




Field Inversion + Machine learning to
Augment Physics-based, Consistent Models

Data

|

Physical model + Inference

v

Machine learning

|

Physical model + consistent
augmentation

Predictive
capability

Data contains real quantities; Model
contains “modeled” quantities (loss of
consistency is bad in turbulence
models)

=>» Inference connects real quantities
to modeled ones

Data will be only loosely connected to
model (and not objective)

=» Inference connects secondary,
non-objective data to model quantites

Data will be noisy and of variable
quality, inherent uncertainty
=>» Probabilistic casting of inference

and learning
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Turbulence modeling , data & tools

Progress in data-driven turbulence modeling
Innovative ways of using data

Perspectives



Quantitative information on model inadequacy
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Modeler knows what is wrong, quantitatively



What does a sub-model require?
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Improving the value of
data!

Experiment
Base SA
Inverse SA based on (;
Inverse SA based on C,

0.6 0.8 1.0

Ability to work on sparse amount of data is
critical
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Sanity check : Are we getting answers for the right reasons?

! : . Experiment -0.02 -0.016 -0.012 -0.008 -0.004 0
0z Base SA
T 2 T Inverse SA
0

x/c

Use pressure data for inference, check if Reynolds stresses are correct



What are the right features?

Feature Normalization
(gp) Description Raw feature (§p) factor (gp)
a1 Ratio of excess rotation rate to strain rate (Q criterion) a1 - 181 IR
9 Turbulence intensity k % U, U;
q3 Wall-distance based Reynolds number min (£ 50u 2) not applicable®
. . 9P [aP oP

q4 Pressure gradient along streamline Ui e ox; ox; U;U;
gs Ratio of turbulent time scale to mean strain time scale ';‘ ﬁ

. 9
gs Cratio of pressure normal stresses to shear stresses J/ % % é P aZl,:
q7 Nonorthogonality between velocity and its gradient [28] |U,U ;2 9%y Yi \/ U,U, U; gij BU"
qs Ratio of convection to production of TKE U; ;f |u Sl
qo Ratio of total to normal Reynolds stresses ||u || k
q10 Streamline curvature | 2L | where F = U/|U|, -

Ds = |U| Dt

I

Wang, Wu, Xiao, PRF 2017.

Feature Importance
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Embedded invariance

ML algorithm embeds rotational
invariance by enforcing that the
predicted anisotropy tensor lies on a
basis of isotropic tensors.

e s = T LR

,,,,,

-----

Ling et al., JFM 2016.
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It is really a set of ideas
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Parish & Duraisamy, Aviation 2014
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Singh & Duraisamy, Scitech 2016
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Duraisamy,
SIAM 2016



Application to RSMs
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Application to RSMs
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True prediction |
S 809, Re=2 Million

Inference used only CL data, NN-augmented model provides
considerable predictive improvements of Cp




-+ Experiment Variability
1.0 — Base SA |
—— Neural Net SA

S 809, Re=2 Million
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80 02 04 06 08 10 Training from different
X/c sets
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Growing community for data-driven turbulence modeling

2011: Cheung, Moser, et al (parametric UQ)

2012: Dow & Wang (non-parametric UQ)

2013: Tracey, Duraisamy, Alonso (ML for non-parametric UQ)
2014: Duraisamy et. (Inversion + ML for model improvement)
2015: Ling & Templeton, Weatheritt & Sandberg (apriori ML)
2016: Xiao et al. (ML for model improvement)

2017: Mishra, laccarino, Edeling (physics, data-based)

Also, Dwight, Cinella, Arunjatesan et al.,
Companies: Altair, Inc. ; UTRC; xxxx; yyyy



Perspectives 1/2

e “Kitty hawk” state, much work remains
* Be careful about what data we can use for calibration and how we
can use it
 Machine learning
=» Can function as indicator
=>» Is an optional step
=» Can be fed by theory and asympotics
* If thereis an underlying “exact” model, we can discover it
 There is no (and will ever be a) universally accurate model waiting
to be discovered
=» Optimal model, conditional on data and assumptions possible
=>» Avoid tendency to overfit
=» Small number of sensible features (Galilean invariant)
=» Absolutely the most sensible thing to do in an industrial setting
(Lots of data for a class of problems, Lots of expertise/knowhow)



Perspectives 2/2

* Modeling has ALWAYS been data-driven & we have always been using
machine learning (and inversion too)

 Data-driven approach is not a substitute to turbulence modeling
 Data-driven approach is not a new way of modeling. It is a new tool.

e Uses (other than prediction):
=>» Model credibility: Can validate/invalidate model structures
=» Uncertainty quantification: Can obtain modeling error bounds
=>» Robust design
=» Feature selection
=>» Input for modeler (forget machine learning)



Vision for the future

A continuously augmented curated database / website of inferred
corrections that are input to the machine learning process

Users upload/download/process data, generate maps.

UNIVERSITY OF

MICHIGAN

Turbulence Modeling Gateway it

Home Team Research Publications Symposium 2017 Support~

Welcome to the Turbulence Modeling Gateway Server. The goal of our project is to develop new techniques for turbulence modeling.
We are exploring a range of techniques including data-driven techniques, advanced structure based modeling and hybrid RANS-LES
methods from a predictive modeling as well as an uncertainty quantification context. We treat all these techniques as natural allies in Enter email
the broad goal of turbulence model improvement.

Email

Password
Currently, the prime focus of our efforts is on the development of the science behind data driven turbulence modeling and
demonstrate the utility of large-scale data-driven techniques in turbulence modeling. Our work involves the development of domain-
specific learning techniques suited for the representation of turbulence and its modeling, the establishment of a trusted ensemble of
data for the creation and validation of new models, and the deployment of these models in complex aerospace problems. Login
We are grateful to the following agencies for funding:

Password

Not a member? Sign up
- NASA : RCA (2011-2014) & LEARN (2014-2017) Forgot password? Click here
- NSF : CDESE (2015-2018) Links
- DARPA : EQUIPS (2015-2018)

» NASA Langley's Turbulence
- ONR : Wall Turbulence BRC (2017-2021)

Modeling Resource page

We have several collaborators at the University of Michigan, Stanford University, and lowa State University. We also consult with + Johns Hopkins Turbulence
Boeing Commerical Airplanes and interact with NASA Langley Research Center. Database

» Universidad Politecnica de
We will highlight our research on this website, will maintain a wiki and we hope to make this a portal which users can Madrid Database

upload/download/process data and turbulence models. You can register using the bar on the right.



”LES accuracy”



COMPUTATIONAL MATERIALS
PHYSICS

Climate Systems Interaction

I The Earth's dimate system Is composed of

Subject-Specific Blood Flow Modeling

Cosmaolnav



Backups



v-Reg Transition Model
- & ONERA M-6 WING

urbulent

Laminar

Dy

Blue: Laminar
Red: Turbulent

y => Transition Model = =P +D, +M,

u, = Modified S-A Model = @ D,+M,

- Predicts natural and bypass transitlon
- Intermittency y = 0 in laminar, 1 in turbulent BL
- Use y to selectively turn on/off turbulence production

- Solves additional equation for Rey and uses experimental correlations
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Preliminary Results — S809 Airfoil, Re = 2 x 10°
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* Excellent agreement between ML-y and y-Rey; models

— Sanity check — ANN tested on same data as on which it was trained




Preliminary Results — S809 Airfoil, Re = 2 x 10°
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Preliminary Results — S809 Airfoil, Re = 2 x 10°
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Aerospatiale-A Airfoil, Re = 2.1 x 10°
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Prediction with Machine-Learning Injection (Re_ =

950)
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