

#### Data-driven turbulence modeling applied to separated flows

Lucas Franceschini, <u>Nicolò Fabbiane</u>, Olivier Marquet, Benjamin Leclaire, Julien Dandois and Denis Sipp

DAAA, ONERA - The French Aerospace Lab, Meudon, France

UMich/NASA Symp. on Advances in Turbulence Modeling, Ann Arbor, Michigan (USA) - July 11/12/13, 2017

#### Do we have the right community?

"A mathematician, a physicist, and an engineer walk into a pub..." – A not-so-funny guy

Our background in a few (recent) examples:

Yegavian et al. (2015) PIV super-resolution with adjoint-based data assimilation.

Beneddine et al. (2016) Stability analysis of turbulent meanflows.

Franceschini et al. (on-going) Dynamic-based turbulence modeling.

Triple decomposition:  $\boldsymbol{u} = \bar{\boldsymbol{u}}_{mean} + \tilde{\boldsymbol{u}}_{coherent} + \frac{\boldsymbol{u}'}{chaotic}$  $\bar{\boldsymbol{u}} \cdot \nabla \bar{\boldsymbol{u}} = -\nabla p - \langle \tilde{\boldsymbol{u}} \cdot \nabla \tilde{\boldsymbol{u}} \rangle + \nabla \cdot \left( (\nu + \nu_t) \left( \nabla \bar{\boldsymbol{u}} + \nabla \bar{\boldsymbol{u}}^T \right) \right)$  $\nabla \cdot \bar{\boldsymbol{u}} = 0$ 

Coherent part from linear optimal frequency response by the meanflow:

$$\langle \tilde{\boldsymbol{u}} \cdot \nabla \tilde{\boldsymbol{u}} \rangle = \int_0^\infty |\boldsymbol{a}(\omega)|^2 \left( \boldsymbol{u}_{opt}^*(\omega) \cdot \nabla \boldsymbol{u}_{opt}(\omega) + \boldsymbol{u}_{opt}(\omega) \cdot \nabla \boldsymbol{u}_{opt}^*(\omega) \right) d\omega$$

Not today. Next time?



#### Data-assimilation





### A correction of Spalart-Allmaras model

Incompressible Reynolds-Averaged Navier-Stokes (RANS) with Spalart-Allmaras (SA) model:

$$\boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \boldsymbol{p} + \nabla \cdot \left( (\boldsymbol{\nu} + \boldsymbol{\nu}_t(\tilde{\boldsymbol{\nu}})) \left( \nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T \right) \right)$$
  
$$\nabla \cdot \boldsymbol{u} = 0$$
  
$$\boldsymbol{u} \cdot \nabla \tilde{\boldsymbol{\nu}} = \beta(\boldsymbol{x}) \underbrace{c_{b1} \tilde{S}(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) \tilde{\boldsymbol{\nu}}}_{P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) \text{ production}} + \underbrace{\frac{1}{\sigma} \nabla \cdot ((\boldsymbol{\nu} + \tilde{\boldsymbol{\nu}}) \nabla \tilde{\boldsymbol{\nu}})}_{D(\tilde{\boldsymbol{\nu}}) \text{ dissipation}} - \underbrace{c_{w1} f_w(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2}_{W(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) \text{ destruction}}$$

Duraisamy and Singh (2016): use  $\beta(\mathbf{x})$  to correct the production term  $P(\mathbf{u}, \tilde{\nu})$ .



#### Adjoint-based optim...assimilation

Adjust the production mask  $\beta(\mathbf{x})$  to match the data  $\mathbf{u}_r$ , i.e. minimize the cost function J.





#### **RANS** solver

Newton's method for steady RANS equation with Spalart-Allmaras model (FreeFem++).





### Flow assimilation (I)

Data: back-facing step simulations by Beneddine et al. (2016)

ZDES data: Re = 57500, Ma = 0.1



THE FRENCH AEROSPACE LAB

N. Fabbiane: Data-driven turbulence modeling applied to separated flows - 6 of 13

### Flow assimilation (I)

Data: back-facing step simulations by Beneddine et al. (2016)

ZDES data: Re = 57500, Ma = 0.1



### Flow assimilation (I)

Data: back-facing step simulations by Beneddine et al. (2016)





 $|\beta| \approx 20$  > not a *small* correction of Spalart-Allmaras anymore!



# Flow assimilation (II)

THE FRENCH AFROSPACE LA

Modified cost-function to penalise extreme corrections of SA:  $\tilde{J} = J + \gamma^2 \int_{\Omega} (\beta - 1)^2 \, d\Omega, \ \gamma^2 = 10^{-2}$ 



ZDES data

# Flow assimilation (II)

Modified cost-function to penalise extreme corrections of SA:  $\tilde{J} = J + \gamma^2 \int_{\Omega} (\beta - 1)^2 \, d\Omega, \ \gamma^2 = 10^{-2}$ 



# Flow assimilation (II)

Modified cost-function to penalise extreme corrections of SA:  $\tilde{J} = J + \gamma^2 \int_{\Omega} (\beta - 1)^2 \, d\Omega, \ \gamma^2 = 10^{-2}$ 



**RANS-SA:** production, dissipation and destruction



**RANS-SA-** $\beta(x)$ : production, dissipation and destruction



#### A more "balanced" role for $\beta$ ?

Equilibrium between the three source terms in the boundary-layer, Spalart and Allmaras (1994):

$$c_{w1} = \frac{c_{b1}}{\kappa^2} + \frac{1+c_{b2}}{\sigma}$$

Equation for the turbulent viscosity  $\tilde{\nu}$ :

$$\boldsymbol{u} \cdot \nabla \tilde{\boldsymbol{\nu}} = \underbrace{\beta(\boldsymbol{x}) \, c_{b1}}_{c_{b1} \text{ tuning}} \tilde{\boldsymbol{S}}(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) \, \tilde{\boldsymbol{\nu}} + \frac{1}{\sigma} \left[ \nabla \cdot \left( \left( \boldsymbol{\nu} + \tilde{\boldsymbol{\nu}} \right) \nabla \tilde{\boldsymbol{\nu}} \right) + c_{b2} \left| \nabla \tilde{\boldsymbol{\nu}} \right|^2 \right] - c_{w1} \, f_w(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) \, \left( \frac{\tilde{\boldsymbol{\nu}}}{d} \right)^2$$

Should we consider a *local* equilibrium in the model?

$$\hat{c}_{w1}(\mathbf{x}) = eta(\mathbf{x}) rac{c_{b1}}{\kappa^2} + rac{1+c_{b2}}{\sigma}$$



#### Flow assimilation (III)

Modified equation for the turbulent viscosity  $\tilde{\nu}$ :

 $\boldsymbol{u} \cdot \nabla \tilde{\boldsymbol{\nu}} = \beta(\boldsymbol{x}) (P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) + W_P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})) + D(\tilde{\boldsymbol{\nu}}) + W_D(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})$ where  $\hat{W}(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}, \beta) = -\hat{c}_{w1}(\boldsymbol{x}) f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2 = \beta(\boldsymbol{x}) \underbrace{\left(-\frac{c_{b1}}{\kappa^2} f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2\right)}_{W_P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})} + \underbrace{\left(-\frac{1+c_{b2}}{\sigma} f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2\right)}_{W_D(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})}$ 

RANS-SA- $\beta(\mathbf{x})$  (top) vs. RANS-SA- $\beta(\mathbf{x})$ - $\hat{c}_{w1}$  (bottom): assimilated flow





N. Fabbiane: Data-driven turbulence modeling applied to separated flows - 10 of 13

#### Flow assimilation (III)

THE FRENCH AFROSPACE LA

Modified equation for the turbulent viscosity  $\tilde{\nu}$ :

 $\boldsymbol{u} \cdot \nabla \tilde{\boldsymbol{\nu}} = \beta(\boldsymbol{x})(P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) + W_P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})) + D(\tilde{\boldsymbol{\nu}}) + W_D(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})$ where  $\hat{W}(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}, \beta) = -\hat{c}_{w1}(\boldsymbol{x}) f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2 = \beta(\boldsymbol{x}) \underbrace{\left(-\frac{c_{b1}}{\kappa^2} f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2\right)}_{W_P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})} + \underbrace{\left(-\frac{1+c_{b2}}{\sigma} f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2\right)}_{W_D(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})}$ 

RANS-SA- $\beta(\mathbf{x})$  (top) vs. RANS-SA- $\beta(\mathbf{x})$ - $\hat{c}_{w1}$  (bottom): production mask



N. Fabbiane: Data-driven turbulence modeling applied to separated flows - 10 of 13

#### Flow assimilation (III)

Modified equation for the turbulent viscosity  $\tilde{\nu}$ :

 $\boldsymbol{u} \cdot \nabla \tilde{\boldsymbol{\nu}} = \beta(\boldsymbol{x}) (P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}) + W_P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})) + D(\tilde{\boldsymbol{\nu}}) + W_D(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})$ where  $\hat{W}(\boldsymbol{u}, \tilde{\boldsymbol{\nu}}, \beta) = -\hat{c}_{w1}(\boldsymbol{x}) f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2 = \beta(\boldsymbol{x}) \underbrace{\left(-\frac{c_{b1}}{\kappa^2} f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2\right)}_{W_P(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})} + \underbrace{\left(-\frac{1+c_{b2}}{\sigma} f_w \left(\frac{\tilde{\boldsymbol{\nu}}}{d}\right)^2\right)}_{W_D(\boldsymbol{u}, \tilde{\boldsymbol{\nu}})}$ 

RANS-SA- $\beta(\mathbf{x})$  (top) vs. RANS-SA- $\beta(\mathbf{x})$ - $\hat{c}_{w1}$  (bottom): viscosity source term





N. Fabbiane: Data-driven turbulence modeling applied to separated flows - 10 of 13

#### Neural network

Produce a general input/output (I/O) function that reproduces the SA correction.

 $\beta(\mathbf{x}) \rightarrow \beta(\mathbf{u}, \tilde{\nu}) \rightarrow \beta(\{f_j(\mathbf{u}, \tilde{\nu})\})$ 

- ► Not directly function of the state (u, ṽ) but on a set of observables {f<sub>j</sub>(u, ṽ)}
- Neural network (scikit-learn package): 1 layer of n=100 neurons.

$$\phi_i = \max\left(0, b_i + \sum_{j=1}^m a_{ij} f_j(\boldsymbol{u}, \tilde{\nu})\right)$$
$$\beta = \beta_0 + \sum_{i=1}^n w_i \phi_i$$

► Which observables  $f_j(\boldsymbol{u}, \tilde{\nu})$ ? First attempt:  $f_j = \{\ln(S), P, \nabla \boldsymbol{u}\}$ 





THE FRENCH AEROSPACE LAB



ZDES

N. Fabbiane: Data-driven turbulence modeling applied to separated flows - 12 of 13













data-assimilation (top) vs neural-network (bottom): viscosity source term



### Conclusions

- A correction of Spalart-Allmaras is fitted to ZDES data.
  - Adjoint-based assimilation algorithm.
  - No appriciable difference between balanced and unbalanced c<sub>w1</sub>.
- A neural network is trained to generalize the identified correction...
- ...and tested on the training flow-case.
- > The algorithm can be (is already) generalised for different cost functions:
  - pressure matching,
  - skin friction matching
  - ▶ ...

and different measuments techniques, i.e. include a measurment operator in the procedure.

Next step(s):

- Explore different input variables for the neural-network model.
- Blind-test on a different-but-similar flow case.
- Expand the training database: CALL FOR incompressible CASES!





### Thank you for your attention.

Any questions?

N. Fabbiane: Data-driven turbulence modeling applied to separated flows - 13 of 13

- Beneddine, S., Sipp, D., Arnault, A., Dandois, J., and Lesshafft, L. (2016). Conditions for validity of mean flow stability analysis. Journal of Fluid Mechanics, 798:485–504.
- Duraisamy, K. and Singh, A. (2016). Informing turbulence closures with computational and experimental data. In 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA.
- Spalart, P. and Allmaras, S. (1994). A one-equation turbulence model for aerodynamic flows. La Recherche Arospatiale, 1:pp. 5-21.
- Yegavian, R., Leclaire, B., Champagnt, F., and Marquet, O. (2015). Performance assessment of piv super-resolution with adjoint-based data assimilation. In 11th International Symposium on PIV, Santa Barbara, California, USA.