DEVELOPMENT OF A BENCHMARK PROBLEM FOR MODELING TRANSITIONAL UNSTEADY FLOWS

Todd Lowe
Crofton Department of Aerospace and Ocean Engineering
VIRGINIA TECH
BLACKSBURG, VA

COLLABORATOR: ERIC PATERSON

TEAM: DI ZHANG, DANIEL CADEL, CHIYOUNG MOON
Outline

• Measurement overview
• Near-wall measurements
• Motiving a benchmark problem
• Benchmark problem details
• Selected experimental and computational results
• Status and directions
Measurements for incompressible flow modeling applications

In order of difficulty (and relative uncertainty):

• Mean velocity
• Reynolds normal stresses
• Reynolds shear stresses
• Mean velocity gradients
• Instantaneous rate-of-strain/vorticity
• Any term above near a wall
• Instantaneous flowfield pressure
• Derived modeling terms (e.g., pressure diffusion, dissipation rate)

Which, if any, modeling terms hold the most value to the community if measured experimentally?
Measurements for incompressible flow modeling applications

In order of difficulty (and relative uncertainty):

• Mean velocity
• Reynolds normal stresses
• Reynolds shear stresses
• Mean velocity gradients
• Instantaneous rate-of-strain/vorticity
• Any term above near a wall
• Instantaneous flowfield pressure
• Derived modeling terms (e.g., pressure diffusion, dissipation rate)

Which, if any, modeling terms hold the most value to the community if measured experimentally?
Specialty: Near-wall velocimetry

Profile velocimetry using beam through airfoil pressure tap (scanning DGV)

Fluorescent particle PIV

Position-resolving LDV

Symbols:
LDV
Line: beam

Fluorescent particle PIV
Motivation: Unsteady Wind Turbine Aerodynamics Modeling

- Blade-turbulence interaction modeling is the primary need for successful high fidelity wind farm modeling
- Past work ("PSU Cyber Wind Facility," Fig 1) exposed deficiencies
- Industry standard design tools even lower fidelity
- Combined computational/experimental approach to develop experiment that will optimally advance modeling
- Windplant modeling capabilities are a critical need:
 - Windplant layout for optimal performance, including addressing extreme cycling loads that may limit lifetime
 - Accurate acoustic impact prediction
 - Improved siting

Fig 1 CWF

(Vijayakumar 2015)
Motivation: Unsteady Wind Turbine Aerodynamics Modeling

- Blade-turbulence interaction modeling is the primary need for successful high fidelity wind farm modeling
- Past work (“PSU Cyber Wind Facility,” Fig 1) exposed deficiencies
- Industry standard design tools even lower fidelity

Full-scale problem is too complicated and expensive for fundamental model development and VVUQ

- Windplant modeling capabilities are a critical need:
 - Windplant layout for optimal performance, including addressing extreme cycling loads that may limit lifetime
 - Accurate acoustic impact prediction
 - Improved siting

Fig 1 CWF
(Vijayakumar 2015)
Large-scale, intense turbulence interacting with downstream wall layers.

IR transition meas. @ $Re_c=1.5M$
Joseph et al. (2016)

Wind turbine airfoils have appreciable laminar flow.

Langtry et al. (2006)
Fundamental/Modeling Assessment

Model problem should capture:

1. *Low reduced frequency unsteadiness in approach flow*
2. **Transitional flow**
3. **Airfoil loading unsteadiness**

Wind turbine airfoils have appreciable laminar flow.

- IR transition meas. @ $Re_c=1.5M$
- Joseph et al. (2016)
- Langtry et al. (2006)
Concept and parameter space considerations

Approach: cambered airfoil in wake of cylinder, $D \sim c$

Considerations:
- Minimize potential flow interactions
- Re_c, reduced frequency, D/c

Practical aspects:
- Wind tunnel scale
- Instrumentation resolution
- Uncertainties

Wind Turbine operating in ABL:

<table>
<thead>
<tr>
<th>Time scale</th>
<th>Length scale</th>
<th>Blade Reynolds number</th>
<th>Reduced frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim O(10^{-3} - 10^1 s)$</td>
<td>$\sim O(10^{-6} - 10^2 m)$</td>
<td>$\sim O(10^7)$</td>
<td>$< 10^{-2}$</td>
</tr>
</tbody>
</table>

Realistic in this benchmark problem:

<table>
<thead>
<tr>
<th>Time scale</th>
<th>Length scale</th>
<th>Blade Reynolds number</th>
<th>Reduced frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim O(10^{-4} - 1 s)$</td>
<td>$\sim O(10^{-6} - 0.1 m)$</td>
<td>$\sim O(10^5)$</td>
<td>> 1</td>
</tr>
</tbody>
</table>
Benchmark Problem Parameters

<table>
<thead>
<tr>
<th>Design condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>profile</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>U_∞</td>
</tr>
<tr>
<td>AR</td>
</tr>
</tbody>
</table>

- $Re_D = 63,500$
- $Re_c = 170,000$
- $k = 1.53$
- Lateral vortex spacing: 58 mm
- Shedding wavelength: 200 mm
- Pressure influence: 6D

NACA 63215b
- $t/c = 15\%$

From steady CFD model:
- $x/c_{\text{trans}} \sim 52\%$
- $x/c_{\text{sep}} \sim 70\%$
Benchmark Problem Parameters

<table>
<thead>
<tr>
<th>Diameter D</th>
<th>Chord c</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>c</td>
</tr>
<tr>
<td>1.5 inches, set to achieve desired Re</td>
<td>4 inches, set to achieve desired k</td>
</tr>
<tr>
<td>NACA 63215B</td>
<td>NACA 63215b</td>
</tr>
<tr>
<td>L/D=10.67</td>
<td>t/c = 15%</td>
</tr>
<tr>
<td>AoA on centerline ±50deg</td>
<td>(x/c_{trans} \sim 52%)</td>
</tr>
<tr>
<td>26 m/s, upper limit of tunnel</td>
<td>(x/c_{sep} \sim 70%)</td>
</tr>
<tr>
<td>18, set by tunnel, (\Lambda / D = 3)</td>
<td>From steady CFD model:</td>
</tr>
</tbody>
</table>

Next step is Stability Wind Tunnel experiments to \(Re_c \sim 3M \)

Lateral vortex spacing: 58 mm

Shedding wavelength: 200 mm

Pressure influence: 6D
Computational overview

<table>
<thead>
<tr>
<th>Regions</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler Region (ER)</td>
<td>Laminar flow, never entered by turbulence</td>
</tr>
<tr>
<td>Laminar (LR)/RANS Region (RR)</td>
<td>Primarily the boundary layer</td>
</tr>
<tr>
<td>Focus Region (FR)</td>
<td>Part of the turbulence is resolved</td>
</tr>
<tr>
<td>Departure Region (DR)</td>
<td>Smoothly blend into ER</td>
</tr>
</tbody>
</table>

Delayed Detached-Eddy Simulation (DDES) (Sparlart, 2006):
\[
\bar{d} \equiv l_{RANS} - f_d \max(0, l_{RANS} - c_{DES} \Delta)
\]

Boundary layer is preserved for RANS model \(k - \omega\) SST integrated with two-equation transition formulation (Langtry et al. 2006)
- Transition momentum thickness Reynolds number \(\bar{Re}_\theta\)
- Turbulence intermittency \(\gamma\)

- OpenFOAM implementation
- Grid includes wind tunnel side walls, but truncated out of plane
- Inflow conditions from experiment
Experimental overview

- Time-resolved, 2D particle image velocimetry
- Three focal regions for optimized spatial resolution
- Extra effort to obtain near surface measurements

More details in Cadel (2016)
Experimental overview

- Time-resolved, 2D particle image velocimetry
- Three focal regions for optimized spatial resolution
 - Extra effort to obtain near surface measurements

Multiple planes of high resolution boundary layer development

More details in Cadel (2016)
Experimental overview

- Time-resolved, 2D particle image velocimetry
- Three focal regions for optimized spatial resolution
- Extra effort to obtain near surface measurements

Mean velocity: $\pm 0.006 U_\infty / \pm 0.1 u_\tau$

Reynolds stresses: $\pm 0.001 U_\infty^2 / \pm 0.5 u_\tau^2$

Local flow angle: $\pm 1^\circ$

Distance from wall: $\sim 50 \mu m / \sim 4 - 5^+$

More details in Cadel (2016)
Objective: assess basic unsteady circular cylinder wake flow ($Re_D = 6.4 \times 10^4$) and prediction performance

- Strouhal number

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$St = fD/U_0$</td>
<td>0.19</td>
</tr>
</tbody>
</table>

- Simulation shows slightly longer recirculation zone

- Local flow angle range is higher than full-scale blade in real conditions.

- Histogram of AOA at airfoil LE
 - Both peak at ±25° with extreme value up to ±50°
Reynolds stresses near cylinder

Qualitatively consistent, still needs detailed quantitative comparisons.
Cylinder/airfoil unsteady flow
Airfoil mean flow

Computation

\[\frac{|V|}{U_0} \quad \text{No Cylinder} \]

\[\frac{|V|}{U_0} \quad \text{Cylinder} \]

Experiment

\[\frac{|V|}{U_0} \quad \text{No Cylinder} \]

\[\frac{|V|}{U_0} \quad \text{Cylinder} \]
Value of detailed experimental data during implementation

- Basic checks during model development, such as Strouhal number consistency
- Correlation of major observations
 - Rapid distortion/pressure redistribution of wake turbulence around airfoil
 - Airfoil does not separate in wake, even instantaneously
- Physics-based insights
Value of detailed experimental data during implementation

- Basic checks during model development, such as Strouhal number consistency
- Correlation of major observations
 - Rapid distortion/pressure redistribution of wake turbulence around airfoil
 - Airfoil does not separate in wake, even instantaneously
- Physics-based insights
Status and directions

- Benchmark case has simple geometry which creates complex unsteady flow with transitional features.
- Detailed experimental measurements for one configuration
 - Solid model, extensive database to be made available.
 - As Heng Xiao noted yesterday, more parametric variation would be useful data-driven methods
- Incorporated Langtry-Menter transition model into OpenFOAM DDES framework
 - Method qualitatively captures many key characteristics of problem.
 - Additional validation and comparison of modeling terms needed.
 - How do gray regions perform for this case/model? What do the experimental results tell us about discrepancies there?
- Even with advanced diagnostics, very difficult to measure many desired terms
 - e.g., We can measure intermittency, but is this the same as transported in the model? What does the intermittency mean in unsteady flow?

Extra slides
Example: advanced diagnostics

Approach: RANS simulations of wind tunnel and NACA 4412 airfoil model
Example: a priori parameter study

Cylinder/airfoil potential flow interaction

PotentialFoam result of pressure recovery along the centerline from cylinder rear stagnation point to airfoil leading edge

Airfoil reduced frequency/Re_{chord}

Cylinder diameter D=1.5 inches, NACA64215b airfoil chord c=4 inches, L=16 inches (10.67D), reduced frequency k=1.53. ReD=63,500, Rec=170,000
Unsteady airfoil results

Cylinder Strouhal frequency seen in boundary layer planes and in lift and drag.

Computational lift and drag:
Final experimental design

10.67D spacing from cylinder center to airfoil LE

- 1.5" chord cylinder
- 4" chord NACA 63215B

Chrome plated to mitigate laser flare

Uniform cross section entrance

sidewall

Flow exit
Unsteady inflow PDFs

- Large spread seen in the probability density function of instantaneous velocities

Variation suggests time-dependent nature of profile