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• Measurement overview
• Near-wall measurements
• Motiving a benchmark problem
• Benchmark problem details
• Selected experimental and computational 

results
• Status and directions
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Outline
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In order of difficulty (and relative 
uncertainty):

• Mean velocity

• Reynolds normal stresses

• Reynolds shear stresses

• Mean velocity gradients

• Instantaneous rate-of-strain/vorticity

• Any term above near a wall
• Instantaneous flowfield pressure

• Derived modeling terms (e.g., pressure 
diffusion, dissipation rate)
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Measurements for incompressible 
flow modeling applications

Which, if any, modeling terms hold the most value 
to the community if measured experimentally?

Reynolds stress dissipation 
rate measurements (Lowe and 
Simpson, IJHFF, 29(3) 2008)
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Measurements for incompressible 
flow modeling applications

Which, if any, modeling terms hold the most value 
to the community if measured experimentally?

Reynolds stress dissipation 
rate measurements (Lowe and 
Simpson, IJHFF, 29(3) 2008)
Stream-wise velocity spectra 

at 𝑅𝑅𝑒𝑒𝜃𝜃 = 7500

𝑦𝑦+
𝑓𝑓−1

𝑓𝑓−5/3
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Specialty: Near-wall velocimetry

Profile velocimetry using beam 
through airfoil pressure tap 

(scanning DGV)

Fluorescent particle PIV

Position-resolving LDV

Symbols: 
LDV
Line: 
beam
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• Blade-turbulence interaction modeling is the 
primary need for successful high fidelity wind 
farm modeling

• Past work (“PSU Cyber Wind Facility,” Fig 1) 
exposed deficiencies

• Industry standard design tools even lower 
fidelity

• Combined computational/experimental 
approach to develop experiment that will 
optimally advance modeling

• Windplant modeling capabilities are a critical 
need:

• Windplant layout for optimal performance, 
including addressing extreme cycling loads 
that may limit lifetime

• Accurate acoustic impact prediction
• Improved siting

6

Motivation: Unsteady Wind Turbine 
Aerodynamics Modeling

http://www.noaanews.noaa.gov/stories2011/i
mages/vattenfall-image_300.jpg

Fig 1 CWF

(Vijayakumar 2015)
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Motivation: Unsteady Wind Turbine 
Aerodynamics Modeling

http://www.noaanews.noaa.gov/stories2011/i
mages/vattenfall-image_300.jpg

Fig 1 CWF

Full-scale problem is too complicated and expensive for 
fundamental model development and VVUQ

(Vijayakumar 2015)
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IR transition 
meas. @ 
𝑅𝑅𝑒𝑒𝑐𝑐=1.5M
Joseph et al. 
(2016)

Laminar

Turbulent
Transition

Langtry et al. (2006) Turbulent

Fundamental/Modeling Assessment

8

Large-scale, intense turbulence interacting with downstream wall 
layers.

Wind turbine airfoils have appreciable laminar flow.
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Large-scale, intense turbulence interacting with downstream wall 
layers.

Wind turbine airfoils have appreciable laminar flow.

Model problem should capture:
1. Low reduced frequency unsteadiness in approach flow

2. Transitional flow
3. Airfoil loading unsteadiness
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Approach: cambered 
airfoil in wake of 
cylinder, 𝑫𝑫~𝒄𝒄

Considerations:
• Minimize potential flow 

interactions
• 𝑹𝑹𝒆𝒆𝒄𝒄, reduced frequency, D/𝒄𝒄

Practical aspects:
• Wind tunnel scale
• Instrumentation resolution
• Uncertainties
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Concept and parameter space 
considerations

Wind Turbine operating  in ABL:

Time scale Length
scale

Blade Reynolds
number

Reduced 
frequency

~O(10−3-
101s)

~O(10−6-
102m)

~O(107) <10−2

Realistic in this benchmark problem:

Time scale Length
scale

Blade Reynolds
number

Reduced 
frequency

~O(10−4-
1 s)

~O(10−6-
0.1 m)

~O(105) >1
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Design condition

D 1.5 inches, set to achieve desired Re

c 4 inches, set to achieve desired k

profile NACA 63215B

L L/D=10.67

h AoA on centerline ±50deg

U∞ 26 m/s, upper limit of tunnel

AR 18, set by tunnel, Λ / D=3
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Benchmark Problem Parameters

Chord c
Diameter D

Spacing L

ReD = 63,500

Rec = 170,000

k = 1.53

Lateral vortex spacing: 
58 mm

Shedding wavelength: 
200 mm

Pressure influence: 6D

NACA 63215b

• t/c = 15%

From steady CFD 
model:

• x/ctrans ~ 52%

• x/csep ~ 70%
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Benchmark Problem Parameters

Chord c
Diameter D

Spacing L

ReD = 63,500

Rec = 170,000

k = 1.53

Lateral vortex spacing: 
58 mm

Shedding wavelength: 
200 mm

Pressure influence: 6D

NACA 63215b

• t/c = 15%

From steady CFD 
model:

• x/ctrans ~ 52%

• x/csep ~ 70%

Next step is 
Stability Wind 

Tunnel 
experiments to 

𝑅𝑅𝑒𝑒𝑐𝑐~3𝑀𝑀
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Computational overview

ER

RR

RR

ER

ERER

FR

FR

FR DR
RR

RRRR

RR

RR

RR

RR

Regions Descriptions
Euler Region(ER) Laminar flow, never entered by 

turbulence

Laminar (LR)/RANS 
Region (RR)

Primarily the boundary layer

Focus Region(FR) Part of the turbulence is resolved

Departure 
Region(DR)

Smoothly blend into ER

Delayed Detached-Eddy 
Simulation(DDES)(Sparlart, 2006):

��̃�𝑑 ≡ 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑓𝑓𝑑𝑑max(0, 𝑙𝑙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐶𝐶𝐷𝐷𝐷𝐷𝑅𝑅𝛥𝛥

Boundary layer is preserved for RANS model 𝑘𝑘 − 𝜔𝜔SST 
integrated with two-equation transition formulation 
(Langtry et al. 2006) 
• Transition momentum thickness Reynolds number �𝑅𝑅𝑒𝑒𝜃𝜃
• Turbulence intermittency 𝛾𝛾

LR

LR

LR

LR

• OpenFOAM implementation
• Grid includes wind tunnel 

side walls, but truncated out 
of plane

• Inflow conditions from 
experiment
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• Time-resolved, 2D particle image velocimetry
• Three focal regions for optimized spatial resolution

• Extra effort to obtain near surface measurements

14

Experimental overview

Near-wake
Large-scales 
around airfoil

More details in Cadel (2016)
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Experimental overview

Near-wake
Large-scales 
around airfoil

x/c
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Multiple planes of high resolution boundary layer development

More details in Cadel (2016)
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• Time-resolved, 2D particle image velocimetry
• Three focal regions for optimized spatial resolution

• Extra effort to obtain near surface measurements
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Experimental overview

More details in Cadel (2016)

Mean velocity: ±𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝑼𝑼∞/ ±𝟎𝟎.𝟏𝟏𝒖𝒖𝝉𝝉
Reynolds stresses: ±𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏𝑼𝑼∞𝟐𝟐 / ±𝟎𝟎.𝟓𝟓𝒖𝒖𝝉𝝉𝟐𝟐

Local flow angle: ±𝟏𝟏𝒐𝒐

Distance from wall: ~𝟓𝟓𝟎𝟎 𝝁𝝁𝝁𝝁/~𝟒𝟒 − 𝟓𝟓+
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Circular cylinder flow

AIAA SciTech 2017
9-13 January 2017, Grapevine, Texas

• Strouhal number

• Simulation shows slightly 
longer recirculation zone

Normalized mean streamwise velocity
• Local flow angle range is 

higher than full-scale blade in 
real conditions.

• Histogram of AOA at airfoil LE

Numerical Experimental

Numerical Experimental

Local angle of attack at airfoil leading edge position

Objective: assess basic unsteady circular cylinder wake 
flow (𝑅𝑅𝑒𝑒𝐷𝐷 = 6.4 × 104) and prediction performance

Experiment Simulation
𝑆𝑆𝑆𝑆 = 𝑓𝑓𝑓𝑓/𝑈𝑈0 0.19 0.2

• Both peak at ±25∘ with 
extreme value up to ±50∘
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Reynolds stresses near cylinder
Computation

Experiment

Qualitatively consistent, still needs detailed 
quantitative comparisons.

18
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Cylinder/airfoil unsteady flow
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Computation
Airfoil mean flow

20

Experiment
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• Basic checks during 
model development, such 
as Strouhal number 
consistency

• Correlation of major 
observations
• Rapid distortion/pressure 

redistribution of wake 
turbulence around airfoil

• Airfoil does not separate in 
wake, even 
instantaneously

• Physics-based insights

21

Value of detailed experimental 
data during implementation

ComputationExperiment

x/c=0.70

𝑦𝑦+

𝑈𝑈+
Experiment
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Value of detailed experimental 
data during implementation

ComputationExperiment

𝑦𝑦+

Phase-
averaged 
deviation 
profiles 
follow 
Stokes 
solution

Experiment
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• Benchmark case has simple geometry which creates complex unsteady 
flow with transitional features. 

• Detailed experimental measurements for one configuration

• Solid model, extensive database to be made available.
• As Heng Xiao noted yesterday, more parametric variation would be useful data-

driven methods
• Incorporated Langtry-Menter transition model into OpenFOAM DDES 

framework

• Method qualitatively captures many key characteristics of problem.
• Additional validation and comparison of modeling terms needed.
• How do gray regions perform for this case/model? What do the experimental 

results tell us about discrepancies there?
• Even with advanced diagnostics, very difficult to measure many desired 

terms

• e.g., We can measure intermittency, but is this the same as transported in the 
model? What does the intermittency mean in unsteady flow?

23

Status and directions
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Associated references

https://arc.aiaa.org/doi/pdfplus/10.2514/6.2017-0917
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Extra slides
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Example:  advanced diagnostics
Example:  advanced diagnostics
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Facility CFD Simulation

Approach:  RANS simulations of wind tunnel and NACA 4412 
airfoil model

Facility Simulation example from Eric Paterson
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Example:  a priori parameter study
Example:  a priori parameter study
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7/12/2017Facility CFD Simulation

PotentialFoam result of pressure 
recovery along the centerline from 

cylinder rear stagnation point to airfoil 
leading edge

Cylinder diameter D=1.5inches, NACA64215b 
airfoil chord c=4inches, L=16inches(10.67D), 

reduced frequency k=1.53. ReD=63,500, 
Rec=170,000

Cylinder/airfoil potential flow interaction Airfoil reduced frequency/Rechord
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Cylinder Strouhal frequency seen in boundary layer planes and in lift and drag.

28

Unsteady airfoil results

Computational lift and drag:
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10.67D spacing from cylinder center to airfoil LE

• 1.5” chord cylinder

• 4” chord NACA 63215B

29

Final experimental design

Chrome plated to 
mitigate laser flare

sidewall

sidewall

Uniform cross 
section entrance

Flow exit
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u+

• Large spread seen in the probability density function of instantaneous velocities

30

Unsteady inflow PDFs

y+ y+ y+

u+

Variation suggests time-dependent nature of profile
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