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RANS Models, Uncertainty & Predictions

The Turbulence Prediction Problem

Turbulence ubiquitous feature of high Re fluid flows

• Has an O(1) affect on the flows in which it occurs

I Transport of momentum, heat, species⇒ drag and separation
resistance, surface heating/cooling, surface reactions

I Mixing of heat, species. . .⇒ quenching, enhanced combustion

• Need to predict effects on turbulence for design & operations

I Solve the Navier-Stokes equations for turbulence (DNS)
I Model the effects of turbulence: RANS or LES

• We understand the microphysics (i.e. the N-S equations), but struggle
to predict the macroscopic behavior (a common situation)

• Critical to know what we are trying to predict (the QoI)
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RANS Models, Uncertainty & Predictions

The Pedigree of a RANS Model
Predict Some Average Properties of Turbulent Flow

• Turbulence is chaotic, but averages appear stable (predictable)

• Averages (e.g. heat flux, heat release) of primary interest

• Sufficient to solve for just the average flow

• Conservation of mean momentum (e.g. incompressible):

∂tUi + ∂jUiUj = −∂iP + ∂j(ν∂jUi − u′iu′j)

I Where applicable, validity of RANS equations is NOT in doubt
I But, u′iu

′
j is not known in terms of Ui (closure problem)

• Closed models for u′iu
′
j are generally “derived” based on usually well

articulated but questionable modeling assumptions
I These models are known to be unreliable
I These models are widely used in engineering
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RANS Models, Uncertainty & Predictions

A RANS Prediction Failure

• k–ε model used to predict heat
transfer from a computer chip
with an impinging air flow

I Heat transfer over-predicted
I Cooling fans under-sized
I Computers overheated

• Now understood as the
“stagnation point anomaly”
(Durbin)

I Durbin developed v2f model
to correct

I Better to detect effect of k–ε
inadequacy
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RANS Models, Uncertainty & Predictions

Parameter Uncertainty Not Enough: Compressible TBL
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• Errors (compared to DNS) are too large to be explained by
uncertainty in the model parameters

• Representation of model inadequacy is consistent with the errors

• Ignoring inadequacy yields invalid predictions
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RANS Models, Uncertainty & Predictions

Why Model & Simulate Turbulent Flows?

• We want to make predictions about the flow
I Support design & decision making

• Predictions are calculations of specific quantities (quantities of
interest, QoIs) for which no corroborating data are available.

I Fundamentally an extrapolation from available information
I e.g. predict performance before a device is built, or response to a new

condition
• But, our (turbulence) models are not reliable.

I They do not rise to the status of reliable scientific theory
I They are known to be inconsistent with observations

What gives us the right to make such predictions?
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RANS Models, Uncertainty & Predictions

Validation for Predictions

• In comparing models to experiments there are always discrepancies,
what do they mean?

I Discrepancies within the uncertainties of the experiments and models
are expected–UQ is necessary for meaningful validation

I What about larger discrepancies?

0 1 2 3 4 5 6 7 8 9
t

2

1

0

1

2

3

4

5

x

Truth

Model

Data

0 1 2 3 4 5 6 7 8 9
t

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

γ
(x

ob
s)

I The calibrated model and the observations in excellent agreement
I It is highly improbable that data and model are consistent
I I want to use this model! It is “inadequate,” does it matter?
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RANS Models, Uncertainty & Predictions

Interpreting Validation Results

A Validation Paradox
• Consistency with observations 6=⇒ valid predictions

I Observation may be insensitive to errors that the QoI is sensitive to
• Inconsistency with observations 6=⇒ invalid predictions

I Observation may be sensitive to errors that the QoI is insensitive to

• If the validation data is not consistent with the model, we have no
“right” to make a prediction.

I The model errors responsible for the observed discrepancies could
also produce significant errors in the QoI.

I But then again, they might not
I To know which, need to represent the uncertainty due to the model

error

• Enrich the erroneous model with a probabilistic representation of the
model error
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RANS Models, Uncertainty & Predictions

RANS as a “Composite Model”
A composite model is the combination of a reliable but unclosed theory,
with a generally less reliable embedded model for closure
• Reliable theory: Conservation of mean mass, momentum & energy,

e.g.:
∂tUi + ∂jUiUj = −∂iP + ∂j(ν∂jUi − u′iu′j)

I Validity not in question in scenarios of interest

• Embedded model: Reynolds stress closure u′iu
′
j ≈ u′iu′j

m

I This is the source of modeling errors
I Assuming reliable auxiliary data (e.g. BCs) and reliable measurements,

this is the cause of discrepancies with observations

• Representation of error determined from observations as

u′iu
′
j ≈ u′iu′j

m
+ εm

• Composite structure allows error to propagate through reliable theory
to unobserved QoI
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RANS Models, Uncertainty & Predictions

Reliable Predictions with RANS? Really?
• Yes if:

I Model formulated within a reliable theory (e.g. conservation laws)
I Unreliable components (embedded models such as Reynolds stress

closure) enriched with a probabilistic representation of uncertainty due
to any model error

I Probabilistic model error representations account for all discrepancies
between model and observations

I In the prediction, enriched embedded models are used in conditions for
which they have been well calibrated and validated

• In this case, we extrapolate with the reliable theory, but not the
unreliable embedded model.

Two common challenges
• Obtaining sufficient data that is informative for parameters/model

inadequacy and relevant to prediction

• Representing the uncertainty introduced by model error
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Data & Uncertainty
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Data & Uncertainty

Challenges with data
• Data is required to

I Inform model parameters and inadequacy representation
I Assess performance of calibrated model away from calibration scenario

• Data used must be informative to the model in the context of the
prediction scenario

• Can be a problem for turbulent flow: Despite plethora of turbulence
data sets from both experiment and DNS, data required for a
particular application may be sparse

Example: High-speed, reacting, turbulent boundary layers
• Existing high-quality experimental data sets not sufficiently

informative

• Existing DNS data sets not sufficiently rich (e.g., not much with
reactions and pressure gradients)

• Solution: Formulate new DNS model problem to supply directly
relevant data
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Data & Uncertainty

Experimental Data Literature Search

Data Selection Criteria (Settles and Dodson [1993])
• Applicability: Experimental scenario and observables must be

relevant to turbulence model predictions for supersonic BL

• Simplicity: Experiment must be simple enough to simulate relatively
easily and cheaply

• Characterized BCs: Data set should supply BC information

• Uncertainty Analysis: Data set must provide measurements and
quantitative, systematic uncertainty estimates

Results
• BC and uncertainty requirements difficult to satisfy

• Identified work of Bowersox and co-authors as a good source of data
from compressible, non-reacting, boundary layer flow
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Data & Uncertainty

Sample Bowersox Supersonic BL Data
ZPG Velocity
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• Applicability: ZPG and FPG, mean and turbulence measurements

• Simplicity: Experimental geometry and scenarios well-defined

• Characterized BCs: Mean velocity profile measured upstream

• Uncertainty Analysis: “Textbook” assessment (linearized
propagation, independent effects) provides confidence intervals
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Data & Uncertainty

Calibration via Baysian Inference

p(θ|D) ∝ p(D|θ)p(θ)
Bayes’ theorem yields parameter uncertainties given data uncertainties

Problem Statement
• Physical model: RANS+Spalart-Allmaras

• Prior: Uniform

• Likelihood: Gaussian

p(D|θ) =

N∏
i=1

1√
2π(σ2

exp + σ2
cal)

exp

[
− 1

2

(Di − fi(θ))2

σ2
exp + σ2

cal

]

Comments
• These choices are overly simplistic

• Seek to understand the effect of the data
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Data & Uncertainty

Posterior PDF
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κ/κ0 ≤ 0.75 strongly conflicts with prior knowledge
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Data & Uncertainty

What is going on? Lack of Near Wall Data
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• Closest measurement point is at y+ ≈ 180

• Very few (zero?) points in log-layer

• κ not constrained as it should be⇒ abused to fit outer layer
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Data & Uncertainty

Observations
From this compressible calibration effort
• Lack of near-wall data means some parameters not appropriately

informed

• Model inadequacy results in those parameters being abused to
correct errors when allowed by the prior

• Can overcome this behavior using a stronger prior, but near-wall data
is necessary to appropriately inform model parameters

More generally
• Data sparsity worsens as problem becomes more complex. E.g.

Reentry vehicle heat shield BL
I Cold, ablating wall
I Chemically reacting flow

• To capture these phenomena and get near-wall data, need to look
beyond legacy data for calibration purposes
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Data & Uncertainty

Options for Generating Calibration Data

TBL Experiments
Advantages

• Physical reality

• Higher Re

Disadvantages

• Difficult to obtain near-wall data

• Uncertainty characterization

Direct Numerical Simulation
Advantages

• Measure any statistic

• Better control

Disadvantages

• A model

• Low Re

Conclusion
Use DNS primarily for calibration; reserve experiments for validation
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Data & Uncertainty

Slow Growth Formulation Background
Difficulty with spatially developing BL DNS
• Complicated by streamwise inhomogeneity

I Must generate inflow data
I Long streamwise domain required to “wash out” inflow effect

• Do we need true spatially developing boundary layer data?
I Probably not: Use multiple scale analysis to model “slow” spatial

development
I Resulting problem is homogeneous in streamwise direction
I Successful TBL DNS using homogenized equations

• Spalart (1988): Incompressible TBL
• Guarini et al. (2000): Compressible TBL

Difficulty with Guarini approach
• Fairly complex modeling required would be difficult to pursue in

context of turbulence model equations

• Need the homogenization terms to be closed in RANS
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Data & Uncertainty

Temporal Slow Growth Formulation

Motivating flow: Rayleigh Problem
• At t = 0, impulsively start infinite plate with velocity U

• BL homogeneous in space but not stationary
U

Slow temporal development
• Define two time variables: tf = t, ts = εt where ε� 1

• Assume mean and RMS depend only on slow time variable:

U(x, y, z, t) = U(y, ts) + URMS(y, ts)U
′(x, y, z, tf )

• Navier-Stokes equations become
∂U

∂tf
+ ε

∂U

∂ts
+N(U) = 0

• Idea: Simulate at single point in slow time by modeling slow evolution
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Data & Uncertainty

Slow Growth Source Terms

• Model slow time evolution:

S(U) ≈ −ε∂U
∂ts
⇒ ∂U

∂tf
+N(U) = S(U)

• Assuming similarity in mean and RMS quantities, i.e.,

Ū(y, ts) = U∞(ts)F (η), URMS(y, ts) = URMS,A(ts)G(η)

where η = y/∆(ts) and ∆ is an appropriate length scale

• The source term can be shown to be

S(U) = − U

U∞

∂U∞

∂ts
+
∂∆

∂ts

y

∆

(
∂U

∂y
+

U ′

URMS

∂URMS

∂y

)
These models have been developed for compressible reacting flows with
pressure gradients, and are easily closed in common RANS formulations
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Data & Uncertainty

DNS Results
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3 Cases Inspired by reentry vehicle heat shields
• ZPG: Zero pressure gradient, Non-reacting,
M∞ = 1.2, Reθ = 420, Twall/T∞ = 0.29, v+wall = 0.019

• FPG: Favorable pressure gradient, Non-reacting,
M∞ = 0.8, Reθ = 368, Twall/T∞ = 0.27, v+wall = 0.020

• REACT: Zero pressure gradient, 5 species air
M∞ = 1.2, Reθ = 438, Twall/T∞ = 0.29, v+wall = 0.019
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Data & Uncertainty

Calibration Overview
Physical Model and Parameters
• Favre-averaged Navier-Stokes + Spalart-Allmaras turbulence model

• 9 physical model parameters (7 SA model parameters, Prt, Let)

Data and Data Uncertainty
• Three DNS cases from previous slide

• Data uncertainty from sampling error estimate

Model Uncertainty
• Variable length scale multiplicative Gaussian process, e.g., for density

ρtrue = (1 + ερ)ρrans, ερ ∼ N(0, k(y, y′)),

k(y, y′) = σ2
ρ

(
2`(y)`(y′)

`2(y) + `2(y′)

)1/2

exp

[
−(y − y′)2

`2(y) + `2(y′)

]
• Adds total of 6 parameters to calibration problem
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Data & Uncertainty

Sample Calibration Results: All Parameters
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Data & Uncertainty

Sample Calibration Results: κ, cv1
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Observations
• Posterior for Karman constant κ shifted to the right relative to prior

• Posterior for cv1 also shifts to right b/c of correlation

• Large values for κ are consistent with low Re effects
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Inadequacy Examples
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Inadequacy Examples Channel flow RANS

Model Inadequacy in RANS
Mean conservation of momentum

∂tUi + ∂jUiUj = −∂iP + ∂j(ν∂jUi − u′iu′j)

• Where applicable, validity of RANS equations is NOT in doubt

• But, u′iu
′
j is not known in terms of Ui (closure problem)

Standard eddy-viscosity-based closure

−u′iu′j = τij = 2νtSij −
2

3
kδij

where Sij is mean strain rate tensor

Model inadequacy idea

−u′iu′j = τij = 2νtSij −
2

3
kδij + ζij

where ζij is random tensor field
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Inadequacy Examples Channel flow RANS

Channel Flow Example

Incompressible, fully-developed channel flow
• Simplest possible wall-bounded flow
• Calibrate and assess stochastic model using DNS

I Reτ = 944, 2003 [del Alamo et al., 2004; Hoyas et al., 2006]
I Reτ ≈ 5200 [Lee et al., 2013]

Mean Momentum

− d

dη

(
1

Reτ

d〈u〉+

dη
+ τ+

)
= 1

Errors
• Mean velocity: e+ = 〈u〉+ − ū+

• Reynolds shear (a priori): ζ = τ+ − νt(〈u〉+) d〈u〉+/dy
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Inadequacy Examples Channel flow RANS

Channel Flow Uncertainty Propagation

Following the a priori approach:

− d

dη

[(
1

Reτ
+ νt(ū

+)

)
de+

dη
+ ∆νt

(
dū+

dη
+
de+

dη

)]
=
dζ

dη

where
∆νt = νt(ū

+ + e+)− νt(ū+)

• Clearly do not know ζ exactly⇒ Need a model

• Use probability to represent uncertainty⇒ Random field models

• Would like ζ to be consistent with knowledge of physics
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Inadequacy Examples Channel flow RANS

A Model For Reynolds Stress Error
Motivation/Inspiration
• True Reynolds stress satisfies Reynolds stress transport equation

• Modeled Reynolds stress does not, but residual is not computable
R(τ) = R(τm + ζ) = 0 ⇒ R′[τm](ζ) ≈ −R(τm)

The model (for channel flow case)

−Cp
dū

dy
ζ︸ ︷︷ ︸

“Production”

+Cp
3

2

√
τm

y
ζ︸ ︷︷ ︸

“Dissipation”

− d

dy

(
(ν + Cννt(ū))

dζ

dy

)
︸ ︷︷ ︸

“Diffusion”

= Cσ

√
s2

`

dW

dy︸ ︷︷ ︸
“Residual”

where s = u3
τ , ` = uτ/(∂u/∂y)

• LHS: Simplistic modeling and dimensional analysis

• RHS: Don’t know correct residual, so choose white noise

• Set parameters Cp, Cν , and Cσ via Bayesian calibration
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Inadequacy Examples Channel flow RANS

Bayesian Calibration Problem
• Most obvious approach uses only DNS mean velocity:

p(Cp, Cν , Cσ|〈u〉+) ∝ p(〈u〉+|Cp, Cν , Cσ) p(Cp, Cν , Cσ)

• Challenging because p(〈u〉+|Cp, Cν , Cσ) is difficult to evaluate
I Requires forward propagation of high-dimensional uncertainty

• Alternatively, using DNS mean velocity and Reynolds stress, can treat
the true error ζtrue as the observable:

p(Cp, Cν , Cσ|ζtrue) ∝ p(ζtrue|Cp, Cν , Cσ) p(Cp, Cν , Cσ)

• Evaluating p(ζtrue|Cp, Cν , Cσ) is easy (it’s Gaussian!)

The likelihood becomes

p(ζtrue|Cp, Cν , Cσ) =
exp

(
− 1

2ζ
T
true(L

−1ML−T )−1ζtrue
)√

(2π)N det(L−1MLT )

where L and M are discrete operators that depend on Cp, Cν , Cσ
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Inadequacy Examples Channel flow RANS

Channel Flow Results Overview

• Fully-developed, incompressible
channel flow

• Turbulence model: Spalart–Allmaras
I Similar results with other models

• Available DNS data
I Reτ = 944, 2003 [del Alamo et al.,

2004; Hoyas et al., 2006]
I Reτ ≈ 5200 [Lee et al., 2013]

• Calibrate with Reτ = 944, 2003 DNS

• Test against Reτ ≈ 5200 DNS
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Look for expected collapse in inner and outer layers as well as any Re
dependence in inverse or forward results
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Inadequacy Examples Channel flow RANS

Calibration Results
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Inadequacy Examples Channel flow RANS

Forward Propagation: Scaling with Re
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• Forward propagate ζ uncertainty to 〈u〉 using posterior mean for
Cp, Cν , Cσ obtained at Reτ = 1000

• Resulting standard deviation of u shows good collapse with usual
non-dimensionalizations

• Inner peak qualitatively similar to true error
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Inadequacy Examples Channel flow RANS

Forward Prop: Comparison Against Calibration Data
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• ±2σ covers true velocity error in both cases
• Shape of σ is qualitatively similar to true error
• But, inner peak is in the wrong location (y+ ≈ 6 instead of 12)
• Some potential to improve by relaxing relation between production

and dissipation terms in model (adds another calibration parameter)

Moser & Oliver UQ in Turb Modeling 7/12/2017 37 / 45



Inadequacy Examples Channel flow RANS

Forward Propagation: Comparison Against Reτ = 5200
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• Qualitatively the same as lower Re results

• Gives confidence that model can successfully extrapolate in Re
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Inadequacy Examples Flamelet-based combustion modeling

RANS/Flamelet Modeling for Turbulent Reacting Flow
• Model equations for ũ, ṽ, p̄, k, ε, z̃, z̃′′2

I Typical RANS modeling: eddy viscosity, gradient diffusion, etc.
• Resulting PDEs depend on mean temperature, which depends on

chemistry
I Chemistry uncertain due to Arrhenius rate parameter uncertainty

and/or mechanism inadequacy

• Closure for mean temperature based on “flamelet library”:

T̃ =

∫ ∞
0

∫ 1

0
T (z, χst)︸ ︷︷ ︸

Laminar diffusion flame

p̃(z)p(χst)︸ ︷︷ ︸
Assumed PDFs

dz dχst

I Basic enabling assumption: Chemical length & time scales small
relative to turbulence⇒ May represent turbulent flame via ensemble of
laminar flames

I T (z, χst) is random field because of uncertain chemistry
I Many other potential inadequacy sources (e.g., assumed PDF forms)
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Inadequacy of flamelet model
• Even when basic enabling assumption is reasonable, the flamelet

model of average thermodynamic and chemical state suffers from
many modeling errors, e.g.

I Errors in the model equations for z̃ and z̃′′2

I Errors in the reconstruction of χ̃ and χ̃′′2

I Errors due to choice of dependencies for thermo-chemical state
I Errors in the assumed PDF for z and χst

• All these errors manifest as uncertainties in the reconstructed
average thermo-chemical state

Stochastic Assumed PDF Model: Main Ideas
1 Represent inadequacies as uncertainties in the PDF for z and χst
2 Generate PDF perturbations by maximizing the KL divergence

relative to original PDF for a given moment perturbation

3 Enrich deterministic model with stochastic PDEs to generate
uncertain moment perturbations

Moser & Oliver UQ in Turb Modeling 7/12/2017 40 / 45



Inadequacy Examples Flamelet-based combustion modeling

Example Uncertain PDF Model (1)

• Standard assumed PDF q(z) is β-distribution with parameters
determined by z̃ and z̃′′2

• Main idea: Given perturbation of implied third moment δ, determine
new PDF p(z) that maximizes DKL(p||q) while matching z̃, z̃′′2 and
perturbed third moment

• Solution of this problem given by

p(z) = exp

[
3∑

n=0

λnz
n − 1

]
q(z).

where λn are Lagrange multipliers

• In discretized combustion model, requires nonlinear system for λn at
each quadrature point

• Simplify by linearizing about q
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Example Uncertain PDF Model (2)

• To complete model, provide a perturbation of the third moment

• Based on exact transport equation for z̃′′3, a plausible stochastic
model for z̃′′3 is

∂

∂t

(
ρ̄z̃′′3

)
+

∂

∂xi

(
ρ̄ũiz̃′′3

)
=

∂

∂xi

(
ρ̄(D̄ +Dt)

∂z̃′′3

∂xi

)
+ 3

µt
Sct

∂z̃

∂xi

∂z̃′′2

∂xi
− 6C3

ρ̄z̃′′3

τ
+R

where R is a random forcing term constructed to be non-zero only in
the flame zone
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Sample Turbulent Jet Flame Results
Infinitely Fast, Irreversible Chemistry

T̃base T̃pert − T̃base

• Left figure: Baseline model predicted mean temperature

• Right figure: Difference between baseline and perturbed model with
deterministic z̃′′3 equation

• Perturbing the assumed PDF can have a substantial impact on T̃
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Sample Turbulent Jet Flame Results
Infinitely Fast, Irreversible Chemistry

T̃base

√
Var(T̃pert)

• Left figure: Baseline model predicted mean temperature

• Right figure: Standard deviation of mean temperature induced by
stochastic z̃′′3 model
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Summary

“Predictive validation” provides a coherent, defensible framework for
approaching validation of predictions of unobserved quantities based on
mixed fidelity models like those commonly used in turbulent flow
predictions

Data sufficiency and model inadequacy are common challenges

• Many turbulence problems admit development of computationally
tractable DNS model problems for generation of calibration and
validation data

• Model inadequacy representations must target the source of
modeling errors (turbulence closures)

• SPDEs offer a promising modeling framework for using physical
knowledge and intuition while randomly perturbing ad hoc or suspect
modeling assumptions that lead to inadequacy
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