Some observations on experiments

 Never measure anything twice (but of course we must)

e Skin friction versus Reynolds number for flat plates
— Any one experiment only covers a range of Reynolds numbers
— Initial conditions are important and wash out slowly

— Boundary conditions are important, e.g., width of plate or tunnel
— Need zero pressure gradient, but what is close enough?
— Need to be smooth (problem at high Reynolds number

e 3D effects in nominally 3D flows

Settles et al. (1979)
at Mach 2.9

Roshko and Thomke (1966) at M = 3.20
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Canonical wall-bounded flows

Plane Couette flow, 2D in the mean
(w/h>>1)

Fully-developed channel flow of high
aspect ratio (L/h >> 1, w/h >> 1)
Fully-developed pipe flow (L/D >> 1)
Turbulent boundary layer, flat plate,
zero pressure gradient, 2D in the

mean, free of transitional or tripping
effects (L/& >> 1, w/d >>1)

Also Ekman layers, Taylor-Couette

flows, Rayleigh-Bénard convection, ...
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Townsend’s attached eddy hypothesis (1976)

Probe
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Townsend'’s attached eddy hypothesis (1976)

Townsend: “It is difficult to imagine how the presence of the wall could impose a
dissipation length-scale proportional to distance from it unless the main eddies of
the flow have diameters proportional to distance of their “centres” from the wall,
because their motion is directly influenced by its presence. In other words, the
velocity fields of the main eddies, regarded as persistent, organized flow patterns,
extend to the wall and, in a sense, they are attached to the wall.”

Perry: In this theory, wall turbulence is considered to consist of a 'forest’ of
randomly positioned horseshoe, hairpin or A-shaped vortices that lean in the
streamwise direction and have their legs extending to the boundary.



Attached eddy concepts

Sth hierarchy

4th hierarchy

3rd hierarchy

Randem distribution of horseshoe vortices, from Perry and Chong's (1982)
model of a turbulent boundary layer.

2nd hierarchy

st hierarchy

Hierarchical model of outer layer

turbU|ence US|ng A'eddles Symbolic representation of a discrete system of geometrically
similar eddy hierarchies from Perry and Chong [1982].
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Adrian, Meinhart & Tomkins (1999) Woodcock & Marusic (2015)



Attached eddy concepts

Random distribution of horseshoe vortices, from Perry and Chong's (1982}
model of a turbulent boundary layer.

Hierarchical model of outer layer
turbulence using A-eddies
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Sth hierarchy

4th hierarchy

2nd hierarchy

st hierarchy

Symbolic representation of a discrete system of geometrically
similar eddy hierarchies from Perry and Chong [1982].

Large Scale Motions

Adrian, Meinhart & Tomkins (1999)

(vortex packets)
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Woodcock & Marusic (2015)



Attached Eddy Model predictions

At high enough Reynolds number, in the overlap region, where the
characteristic motions scale with the distance form the wall:

u”? y
u_72_ = B1 — Al In <g> ,
ur? y
'u,—72_ = B3 — A3 111 (5) y
W

u_72_ — AQ.

Townsend employed a heuristic model
Perry used a spectral overlap argument

1
Ut = -lnyt +B
K

Need high Reynolds number experiments




High Reynolds number in the lab:
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Fully-developed pipe flow experiments

81 x 10° < Rep < 6 x 10°
2000 < Re, < 98,200

31 x 103 < Rep < 35 x 10°
103 < Re, <5 x 10°




Superpipe

31 x 10° < Rep < 35 x 10°
103 < Re, <5 x 10°

81 x 10° < Rep < 6 x 10°
2000 < Re, < 98,200




High Reynolds number Test Facility (HRTF)

Flat plate boundary layer
experiments

8400 < Reg < 235,000
2600 < Re, < 72,500

'Blister' insert

Flow [ripwire
yan p
= =

0.49 m

/J ! 1.82 m
76 mm
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Superpipe mean velocity results
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Superpipe mean velocity results

Outer scaling

Classic scaling

VIR

Zagarola scaling

(Zagarola & Smits, JFM 1998)



Expected turbulence behavior

16
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¢ Re =735

A 1340 .
= 2220

¥ 3810

® 13500

X (%) 8.3x10° :
+3.1x10° ABL
33.8x10° .

Inner layer peak at y* =15, that grows with Reynolds number
Indicates outer layer influence near wall

(Marusic et al. 2003)



Nano-Scale Thermal Anemometry Probe (NSTAP)

* Freestanding Pt wire
* Supporting Si structure

* QOperated with a conventional
anemometer system (CTA)

* 0.1 x 2 um cross-section
30 o0r 60 um sensing length
* Frequency response > 150kHz

* | Commercialization: InstruMEMS (startup
to do probes), Dantec (to anemometers)

Bailey et al (2010) JFM
Vallikivi et al (2011) Exp. in Fluids
Vallikivi & Smits (2014) IMMS



Turbulence measurements in Superpipe
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(Hultmark, Vallikivi, Bailey & Smits, 2012)



Log-law in turbulence for pipe flow

y+ > 100
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(Hultmark, Vallikivi & Smits, 2012)



Wall-bounded flows: Boundary layer vs. pipe flow
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A universal log law for turbulence
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A universal log law for turbulence
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Hultmark, Vallikivi, Bailey and Smits (2013)



What about spectra?



Perry et al. AEM spectral overlap arguments

Streamwise component only
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Perry & Abell (1977); Perry, Henbest & Chong (1986)



What about -5/37
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What about -5/37

6
107 E - Pipe
Boundary Layer Our data
104 r 1.8 \
. Ng
1.6F
2 I:._ -] :- ° (1 _
10 o 14 A ®
0 mA = GG 2000 (theory)
1.2} B MW 1996 (1-component) ||
’ A A MW 1996 (2-component)
100 1 - - =-5/3 refence line
‘ 0 200 400 600 800 1000
3 R,
y/6 =0.1 \ '
10“2 6 I 5 I 4 3 2 I 1 M 0
10 10 10 10 10 10 10

kxNk

Mydlarski and Warhaft (1996),
Gamard and George (2000)

kx_s/3 region

-5/3
cl)1,Lu"’kx /

cI)uu ~kx —§+I—l’ U

5 1
NlnRe




What about -1?
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What about -1?
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Nickels et al (2005)



Pre-multiplied -1 spectra

Boundary Layer
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Pre-multiplied -1 spectra | Re, ~ 70,000

Boundary Layer

del Alamo ef al.
Y& (2004)
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Canonical pipe and boundary layers

A log-law in turbulence is found to occur in the same region where the log-
law in mean velocity is found, in accordance with AEM

Inner peak is weakly dependent on Reynolds number, not in accord with
AEM

Spectra asymptote very slowly to -5/3, as suggested by Mydlarski and
Warhaft (1996), Gamard and George (2000)

No overlap region found where inner (y) and outer (8) scaling occur over
the same range of wavenumbers (no k-1) at these Reynolds numbers, not in
accord with Perry scaling

A mesolayer exists as a blending region between the wall-scaled region and
the y-scaled region (only evident at high Reynolds number)



Beyond canonical flows

Flat plate zero pg flow, or fully developed pipe/channel flows are canonical
but singular cases

Need to move beyond canonical flows

Wall-bounded turbulence includes roughness, pressure gradients, surface
curvature, three-dimensional flows, separation, blowing, suction, etc.

Much work was done in the past, but the last 20 years or so the basic
research community seems to have been fixated on canonical cases

There may be a glass ceiling on studying canonical flows



a (W/im?)

Beyond canonical flows

How robust is the Attached Eddy Model for complex flows?

Many existing experiments are old, and not fully documented or limited in data extent
(Cf, Cp, mean velocity, turbulence, ...). Maybe need another sifting, as done by
Stanford Olympics | and Il, Fernholz and Finley, Settles & Dodson, Roy & Blottner?
Certainly need error bars.

Reynolds number effects for complex flows are not well understood.

New experiments designed in collaboration with CFD community to examine more
complex flows to gain both new understanding AND help improve turbulence models

Example, APG flows beyond equilibrium, as in DLR experiment (Knopp et al. TSFP10)

Compute entire flow, including wind tunnel walls (helps to eliminate many sources of
uncertainty in initial and boundary conditions)
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Roy & Blottner (2006) Knopp et al. TSFP10



New high pressure experiments

15,8 Rotor-@ at =200mm

HRTF VAWT
experiments in
HRTF at full scale
Reynolds number
and Tip Speed
Ratio (Hultmark)

New facility (Marcus Hultmark):
*1.5mby9mlong

* 1000 psi (68 bar)

 Can match propellor conditions at 1/10t
scale at (0.7 m diameter) at 15 m/s

e Can match HAWT conditions at 1/100t
scale (1 m diameter) at 11 m/s



New Superpipe experiments
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Region 1: favorable pg, convex S/L curvature, divergence
Region 2: adverse pg, convex S/L curvature, convergence
Region 2: adverse pg, convex S/L curvature, convergence
Region 2: adverse pg, convex S/L curvature, convergence

 High Reynolds number (inflow Re_= 10°; Re, = 20x10°)

* Inflow fully-developed pipe flow



Questions??

Osborne Reynolds



