

Towards A Physics-Informed Machine Learning Framework for Predictive Turbulence Modeling

Heng Xiao and Jinlong Wu Department of Aerospace & Ocean Engineering Virginia Tech

NASA/UMich Symposium, July 12, 2017

Acknowledgment of Contributors

Dr. Jianxun Wang

Dr. Rui Sun

Also: Dr. Julia Ling Dr. Eric Paterson

UirginiaTech

Dr. Qiqi Wang

A Scenario for RANS-Based Design/Optimization

Calibration Cases (offline data)	Prediction Cases (no data)
A few configuration with data (DNS or experimental	Similar configuration with different:
measurements)	• Twist
	 Sweep angles

• Airfoil shape

How to leverage data to complement RANS models? <u>machine learning</u>?

Machine Learning is an Umbrella Term

(Supervised) machine learning in a nutshell:

- <u>pose</u> a function mapping from input **q** to output **y**, controlled by parameters **W**
- 2. <u>fit (learn)</u> the mapping to training data by optimizing the parameters **W**
- 3. <u>predict</u> **y** for unseen inputs

ML can handle high-dimensional input space.

Why do you expect a functional mapping between **q** and **y**?

What output **y** we want to learn from data? Discrepancies in: $\mathbf{q} \stackrel{\mathbf{W}}{\mapsto} \mathbf{y}$

- Model coefficients
- Unclosed terms in the transport equations (Duraisamy)
- RANS-predicted eddy viscosity
- RANS predicted Reynolds stress

Representation of Reynolds Stress Discrepancies

 Barycentric triangle (realizability map) provides a bound of all realizable Reynolds stresses.

$$\boldsymbol{\tau} = 2k\left(\frac{1}{3}\mathbf{I} + \mathbf{a}\right) = 2k\left(\frac{1}{3}\mathbf{I} + \mathbf{V}\Lambda\mathbf{V}^T\right)$$

- You can perturb Reynolds stress τ^{rans} to stress τ* by changing the size, aspect ratio, and orientation: preserve realizability & orthogonality
- * Use ML to learn the **perturbations** needed to transform τ^{rans} to $\tau^*!$

[laccarino et al.]

Physics-Informed Machine Learning for Predictive Turbulence Modeling

Construction of Feature Space

$$\{S, \Omega, \nabla p, \nabla k, Re_d, \mathcal{P}/\varepsilon, k/\varepsilon, \kappa\}$$

4 tensors/vectors; 47 invariants (integrity bases)

- Invariants of 4 tensors/vectors: strain rate (S), rotation rate (Ω), pressure (p) gradient, TKE (k) gradient: draw 4 scalars: streamline curvature (K), wall-distance based Reynolds number (Re_d), turbulent time scale
- * (Normalized) feature vector \mathbf{q} has a length of ~50.
- Choice of features inspired by advanced turbulence models.

Objective: train discrepancy functions $\Delta oldsymbol{ au}(\mathbf{q})$

(Ling et al. JCP 2017; Wang et al. CTR Proceeding 2017)

Non-Dimensionalization of Inputs

Normalized raw input $\hat{\alpha}$	description	raw input α	normalization factor β	
$\hat{\mathbf{S}}$	strain rate tensor	\mathbf{S}	$rac{arepsilon}{k}$	
Ω	rotation rate tensor	Ω	$\ \mathbf{\Omega} \ $	
$\widehat{\nabla p}$	Pressure gradient	∇p	$ ho \ \mathbf{U} \cdot abla \mathbf{U} \ $	
$\widehat{\nabla k}$	Gradient of TKE	∇k	$\frac{\varepsilon}{\sqrt{k}}$	

(Wang et al, CTR Proceeding 2017; Wu and Xiao, In preparation)

Machine Learning Techniques

Summary of Current Progress

Square Duct Flows:

Separated Flows:

High-Mach Flat Plate BL:

Test Case I: Turbulent Flows in Square Duct

Predicted TKE and turbulent shear stress for Periodic Hill Re=10595

Reynolds stress improved; but what about the mean velocities?

(Wang,Wu & Xiao, PRF 2017)

Is Reynolds stress the right choice as the output of machine learning?

- Reynolds stress models are unstable
- No implicit treatment possible here in data-driven modeling.

A Priori Studies: Propagating DNS Reynolds Stresses to Mean Velocities

$$\overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}} - \nu \nabla^2 \overline{\mathbf{u}} + \nabla p - \nabla \cdot \boldsymbol{\tau} = 0$$
Use Reynolds stresses from DNS

No model can give a better Reynolds stress than DNS data (EVM, algebraic/differential RSM or datadriven model).

Velocity Propagated from DNS Reynolds Stress

- DNS data from (Breuer et al., 2009). Validated with new simulations by Laizet et al. (Imperial college)
- We proposed a concept of "condition number for turbulence models". Manuscript in preparation (Wu et al. 2017).

Propagated Velocity from DNS Eddy Viscosity

An "optimal" eddy viscosity field (in a least square sense) is obtained from DNS Reynolds stresses:

$$\nu_t^{LS} = \frac{\boldsymbol{\tau} : \mathbf{S} - \frac{2}{3}k\mathbf{I} : \mathbf{S}}{\mathbf{S} : \mathbf{S}}$$

Combining Reynolds Stress and Eddy Viscosity

Obtaining the eddy viscosity and non-linear component separately:

$$oldsymbol{ au} = egin{aligned} & LS \ &
u_t^{LS} \mathbf{S} + oldsymbol{ au}^\perp \ &
u_t^\perp \end{bmatrix}$$

Take the Lessons Learned in A Priori Studies to Machine-Learning-Assisted Turbulence Modeling

Turbulence Database In the Age of Data-Driven Modeling

- Wanted: DNS, LES, or experimental data on flows with parameterized configurations (geometry, Re, Ma, AoA).
- We need mean velocities & Reynolds stress fields, possibly at sparse yet representative locations

A Less Ambitious Endeavor: Training & Prediction Flows Are Very Similar

Learning Both Reynolds Stress & Eddy Viscosity

(Realistic) Vision in RANS-based Geometry Optimization

Path of geometry evolution

- Proposed a distance metric. (Wu et al. FTaC 2017)
- Typical configurations: flow over bumps, airfoils, wingbody junctures, blade tip clearance.

("Fantasy") Vision: Leverage Data from Elementary Flows to Predict Complex Flows Training: data from elementary flows

Feature Space View

Addressing Dr. Menter's concerns on ML:

- Data-driven models are constructed as "add-on" (patch) for traditional models, by developers.
- The database and the machine learning are built into the model; not constructed by the users.

Traditional vs. Data-Driven Turbulence Modeling: A Unified Perspective

- Not just buzzword-chasing.
- Machine-learning-assisted turbulence modeling, as we are pursuing, is serious turbulence modeling.
- All constraints in conventional turbulence modeling must be equally respected (see Spalart 2015: Philosophies and fallacies in turbulence modeling. Progress in Aerospace Sciences) :
 - Objectivity and frame independence (e.g., can't use velocity or pressure as input)
 - Realizability of Reynolds stress
 - Non-dimensionization and invariance set

Summary and Open Questions

- Proposed a Physics-Informed Machine Learning (PIML) to correct/improve existing turbulence models.
- Learn discrepancies of RANS modeled Reynolds stresses (with stabilization)!
- Preliminary success in scenarios where training and prediction flows are similar.
- **Open Questions:**
 - What is the limit of data-driven modeling? How different can the training/predictions flows be?

Is a (weakly) universal data-driven turbulence modeling possible or valuable?

Related Papers

- J.-X. Wang, J.-L. Wu, and H. Xiao. A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data. Physical Review Fluids, 2(3), 034603, 1-22,2017.
- J.-L.Wu, J.-X.Wang, H. Xiao, J. Ling. A Priori Assessment of Prediction Confidence in Data-Driven Turbulence Modeling. Flow, Turbulence and Combustion, 99(1), 25-46, 2017.
- * J.-L.Wu, R. Sun, H. Xiao, Q. Wang. On the conditioning of turbulence models. In preparation.

https://sites.google.com/a/vt.edu/hengxiao/

Thank you!

Propagating DNS Reynolds Stresses to Velocities

(Thompson et al. 2016 C&F; Poroseva et. al. POF 2017; Wu et al. Under preparation.)

Condition Numbers for Channel Flows at Re_{τ} = 180 to 5200

Derivation of Local Condition Number

Non-dimensionalization of features

Normalized raw input $\hat{\alpha}$	description	raw input α normalization factor β		
$\hat{\mathbf{S}}$	strain rate tensor	\mathbf{S}	$rac{arepsilon}{k}$	
$\hat{\mathbf{\Omega}}$	rotation rate tensor	Ω	$\ \mathbf{\Omega} \ $	
$\widehat{\nabla p}$	Pressure gradient	∇p	$ ho \ \mathbf{U} \cdot abla \mathbf{U} \ $	
$\widehat{\nabla k}$	Gradient of TKE	∇k	$\frac{\varepsilon}{\sqrt{k}}$	

(Wu and Xiao, In preparation)

Feature (q_{β})	Description	Raw feature (\hat{q}_{β})	Normalization factor (q_{β}^*)
$\overline{q_1}$	Ratio of excess rotation rate to strain rate (Q criterion)	$\frac{1}{2}(\ \mathbf{\Omega}\ ^2 - \ \mathbf{S}\ ^2)$	$\ {\bf S}\ ^2$
q_2	Turbulence intensity	k	$rac{1}{2}U_iU_i$
q_3	Wall-distance based Reynolds number	$\min\left(\frac{\sqrt{k}d}{50\nu},2\right)$	not applicable ^a
q_4	Pressure gradient along streamline	$U_k rac{\partial P}{\partial x_k}$	$\sqrt{rac{\partial P}{\partial x_j}rac{\partial P}{\partial x_j}U_iU_i}$
q_5	Ratio of turbulent time scale to mean strain time scale	$rac{k}{arepsilon}$	$\frac{1}{\ \mathbf{S}\ }$
q_6	Cratio of pressure normal stresses to shear stresses	$\sqrt{\frac{\partial P}{\partial x_i} \frac{\partial P}{\partial x_i}}$	$\frac{1}{2} ho \frac{\partial U_k^2}{\partial x_k}$
q_7	Nonorthogonality between velocity and its gradient [28]	$ U_i U_j rac{\partial U_i}{\partial x_j} $	$\sqrt{U_l U_l U_l U_i \frac{\partial U_i}{\partial x_j} U_k \frac{\partial U_k}{\partial x_j}}$
q_8	Ratio of convection to production of TKE	$U_i rac{dk}{dx_i}$	$ \overline{u'_ju'_k}S_{jk} $
q_9	Ratio of total to normal Reynolds stresses	$\ \overline{u_i'u_j'}\ $	k
q_{10}	Streamline curvature	$ \frac{D\Gamma}{Ds} $ where $\Gamma \equiv \mathbf{U}/ \mathbf{U} $,	$\frac{1}{L_c}$
		$Ds = \mathbf{U} Dt$	

(Wang, Wu, Xiao, PRF 2017)

Test Case 3: Flat Plate Boundary Layer

- Flow to be predicted: Ma=8, Tw=0.53
- * Flows in the database:

Ma=6.0, Tw=0.25 [cold wall] Ma=2.5, Tw=1.0 Ma=6.0, Tw=0.76

Only the Ma=2.5 case is used for training

37

Wall temperature Tw normalized by recovery temperature Tr: $T_r = T_{\infty}(1 + 0.9 * \frac{\gamma - 1}{2}M_{\infty}^2)$

Turbulent Kinetic Energy

Realizability Map

 Outside the boundary layer, the Reynolds stress anisotropy does not have physical significance.

Turbulent Shear Stress

Prediction: Ma=8, Tw=0.53