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A Scenario for RANS-Based Design/Optimization

Calibration Cases

(offline data) Prediction Cases (no data)

A few configuration with | Similar configuration with
data (DNS or experimental| different:

measurements) . Twist

+ Sweep angles

» Airfoil shape

How to leverage data to
complement RANS models?

machine learning!?




Machine Learning is an Umbrella Term

(Supervised) machine learning in a nutshell:

|. pose a function mapping
from input g to output y,
controlled by parameters W
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2. fit (learn) the mapping to
training data by optimizing
the parameters W

3. predict y for unseen inputs

ML can handle high-dimensional input space. q

VWhy do you expect a functional mapping
between q and y!?




What can be corrected in RANS Simulations?
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What output y we want to learn from data? | ., W

Discrepancies in:

Model coefficients

Unclosed terms in the transport equations (Duraisamy)
RANS-predicted eddy viscosity

RANS predicted Reynolds stress él-



Representation of Reynolds Stress Discrepancies

“ Barycentric triangle (realizability
map) provides a bound of all
realizable Reynolds stresses.
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* You can perturb Reynolds stress /" to stress T* by
changing the size, aspect ratio, and orientation:
preserve realizability & orthogonality

+ Use ML to learn the perturbations needed to
transform T/ to T*!

“physics-informed”
[laccarino et al.]



Physics-Informed Machine Learning for
Predictive Turbulence Modeling

(a) training: DNS data of
elementary flows

attached boundary layers

., =

BL2 [
free shear flows

[T training with ]

machine learning |

algorithms I

data: features g I
responses AT

T

(b) trained discrepancy
functions
(e.g., random forests,
or neural network)
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- \\
a ~
Tree T q

(c) prediction:
complex, realistic flows

Ipredlctlon with
IML-assisted
IRANS simulation

I query: feature q'
I

| corrections AT’ to
!RANS Reynolds stress

S ——




Construction of Feature Space

{S,9Q,Vp,Vk, Rey, Ple, k/e, Kk}

4 tensors/vectors; 4/ invariants (integrity bases)

Invariants of 4 tensors/vectors: strain rate (S), rotation
rate (), pressure (p) gradient, TKE (k) gradient: draw
4 scalars: streamline curvature (K), wall-distance based
Reynolds number (Req), turbulent time scale

(Normalized) feature vector q has a length of ~50.

Choice of features inspired by advanced
turbulence models.

Objective: train discrepancy functions AT (q)
(Ling et al. JCP 2017;Wang et al. CTR Proceeding 2017)



Non-Dimensionalization of Inputs

Normalized o , o
, A description raw input « normalization factor (5
raw mput «
A strain rate €
S S b
tensor k
A rotation rate
0 ) 0 2
ensor
~ Pressure
Vp . Vp p|U - VU
gradient
—~ Gradient of €
Vk VEk =
TKE vk

(Wang et al, CTR Proceeding 2017; Wu and Xiao, In preparation)



Machine Learning Techniques
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Summary of Current Progress

—
~ m
O
s 3
> ©
< 5
00 &
1L L

Recycl

ing

plane

R NN

;o=

LS
[l

ining

Tra

5

=2

Ma

Separated Flows

Iction

Pred

-
O
)
=
O
)
.
al




NG

aam NN
\
|

ol
*

P ‘-—‘—‘

S ==

¢ £ S o s

2200

B e,

Yy

Turbulent Flows in Square Duct
Re =
o

Test Case |

Reb=3500
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DNS data from (Uhlman et al. 2010 JFM)




Velocity W
Prediction w/ = §ilii
ML Corrected il
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Test Case 2: Flows with Massive Separations

Training flows

backwa acing step

Train discrepancy
function AT(q)

Prediction

Periodic hill
Re=10595

Source: http://turbmodels.larc.nasa.gov/
other_dns.html 14
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y/H

y/H

Blue:

Black:
RANS LES (truth) Prediction

Red:

Predicted TKE and
turbulent shear stress for
Periodic Hill Re=10595

Reynolds stress improved;
but what about
the mean velocities!?

== RANS === Benchmark === RF Prediction
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(Wang,Wu & Xiao, PRF 2017)



Is Reynolds stress
the right choice
as the output of machine learning?

“ Reynolds stress models are unstable

“ No implicit treatment possible here in data-driven
modeling.
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A Priori Studies:
Propagating DNS Reynolds
Stresses to Mean Velocities

ﬁ-Vﬁ—VVQE—I—Vp—V-T = 0
Use Reynolds stresses from DNS

No model can give a better Reynolds stress than
DNS data (EVM, algebraic/differential RSM or data-
driven model).



Velocity Propagated from DNS Reynolds Stress

= DNS === Propagation

3.0r
2.5l
2.0l
= 1.5
N
1.0
0.5
0.0

0

z/H; 2U,/U, +x/H
DNS velocities vs. propagated velocities

DNS data from (Breuer et al., 2009). Validated with
new simulations by Laizet et al. (Imperial college)

We proposed a concept of “condition humber for

turbulence models’. Manuscript in preparation
(Wu et al. 2017).
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Propagated Velocity from DNS Eddy Viscosity

= DNS === Propagation

z/H; 2U, /U, +z/H

I”

An “optimal” eddy viscosity field (in a least square
sense) is obtained from DNS Reynolds stresses:
LS_T:S—%/{I:S
T TS:S

19



Combining Reynolds Stress and Eddy Viscosity

= [DNS === Propagation
3.0r — =

2.5|
2.0}
S 1.5
™
1.0
0.5 §
°% 2 4 6 8 10
z/H;, 2U,/U,+xz/H
Obtaining the eddy viscosity and non-linear component
separately:

0

T =78 +|T

Implicit Explicit
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Take the Lessons Learned in
A Priori Studies to
Machine-Learning-Assisted
Turbulence Modeling



Turbulence Database In the Age of

Data-Driven Modeling

® Wanted: DNS, LES, or experimental data on flows

with parameterized configurations (geometry, Re,
Ma, AocA).

® VWe need mean velocities & Reynolds stress fields,
possibly at sparse yet representative locations

Baseline 4/(

Geometry




A Less Ambitious Endeavor:
Training & Prediction Flows Are Very Similar

general flow direction

>

| ~~——_ recirculation zone //

prediction
80% the width of N\ /
the baseline hill \\

training



Learning Both Reynolds Stress & Eddy Viscosity

3.0p
2.5
2.0
1.5
1.0
0.5
0.0

z/H; 2U, /Uy + x/H
Mean Velocity Prediction
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(Realistic) Vision in RANS-based
Geometry Optimization

Optimization path  _—— ___————
¥ \
A RANSY, >~
/ \
RANS / —— MS \\\
= A
CRANS / — = e N
/
s =

Path of geometry evolution

“ Proposed a distance metric. (Wu et al. FTaC 2017)

+ Typical configurations: flow over bumps, airfoils, wing-
body junctures, blade tip clearance.

25



(“Fantasy”) Vision: Leverage Data from
Elementary Flows to Predict Complex Flows

Prediction:
Industrial flows

Some figures adopted from Ling et al. POF 201 5;
www.turbostream-cfd.com; youtube.com

26
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Feature Space View

training flows

separated flows (S)

————

S N—

attached boundary

layers (BL)—.,'

free shear flows

(FS) :'_"‘3\',\',{; A

other flows ... ...

feature space view of
training data

prediction:
complex,
realistic flows

Addressing Dr. Menter’s concerns on ML:

+ Data-driven models are constructed as “add-on”
(patch) for traditional models, by developers.

“ The database and the machine learning are built into
the model; not constructed by the users.




Traditional vs. Data-Driven Turbulence
Modeling: A Unified Perspective

Not just buzzword-chasing.

Machine-learning-assisted turbulence modeling, as
we are pursuing, is serious turbulence modeling.

All constraints in conventional turbulence

modeling must be equally respected (see Spalart
201 5: Philosophies and fallacies in turbulence
modeling. Progress in Aerospace Sciences) :

Objectivity and frame independence (e.g., can’t
use velocity or pressure as input)

Realizability of Reynolds stress

Non-dimensionization and invariance set

28



Summary and Open Questions

“ Proposed a Physics-Informed Machine Learning
(PIML) to correct/improve existing turbulence
models.

* Learn discrepancies of RANS modeled Reynolds
stresses (with stabilization)!

“ Preliminary success in scenarios where training and
prediction flows are similar.

Open Questions:
What is the limit of data-driven modeling! How
different can the training/predictions flows be?

Is a (weakly) universal data-driven turbulence modeling
possible or valuable!?
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Thank you!



Propagating DNS Reynolds Stresses to Velocmes

1

1
—Re = 5200, U
0.9 106 ReT= 5200, Urecovered (7) o— 0.9 1 ReqUII‘ed T
N o 0.8
e ; |l to obtain DNS U
0.7 P .
DNS ; 06|
0.6 - PV o
<os velocity J | - JTost
” 0.4l (M I ) @ 0.4
| oser et a ’ |
| ; st DNS T
0.2 F
0.1 -
%0 05 : 15
u'u’ x1073
Frictional Reynolds number (Re;) | 180 550 1000 2000 | 5200
Errors in Reynolds stresses, averaged | 0.17% 0.21% 0.03% 0.15% § 0.31%
maximum | 0.43% 0.38% 0.07% 0.23% § 0.41%
Errors in mean velocities, averaged | 0.25% 1.61% 0.17% 2.85% | 21.6%
mazximum | 0.36% 2.70% 0.25% 5.48% | 35.1%

(Thompson et al. 2016 C&F; Poroseva et. al. POF 2017; Wu et al. Under preparation.)

32



= = =
o o o
= N w

Condition number

[E]
o
o

Condition Numbers for Channel Flows
at Rer = 180 to 5200

SN M T T N B i
U T U VTl
| Errorin Kl Error in

K oc Reg:®* | M€ Condition Reynolds

RW | velocity Lo Stresses

107 | 108 | - 10*

r is the j* row of matrix inv(A)
in discretized RANS equation:

AU = [b]

(Wu et al. Under preparation) 33



Derivation of Local Condition Number
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Non-dimensionalization of features

Normalized

, . description raw input « normalization factor (5
raw mput «
A straln rate €
S S b
tensor k
A rotation rate
0 ) 0 o
ensor
~ Pressure
Vp . Vp p||U - VU
gradient
—~ Gradient of 3
VEk VEk =
TKE Vk

(Wu and Xiao, In preparation)



Feature Normalization
(gp) Description Raw feature (gp) factor (q;)
q1 Ratio of excess rotation rate to strain rate (Q criterion) %(H 72— ISI®) 1S||?
q> Turbulence intensity k % U, U;
q3 Wall-distance based Reynolds number mm( 50 ,2) not applicable®
4 Pressure gradient along streamline k aa—P \/ g—P g—P U, U,
Xk Xj 0xj
qds Ratio of turbulent time scale to mean strain time scale f ” S”
: 9
de Cratio of pressure normal stresses to shear stresses / % % l aljl,j
q7 Nonorthogonality between velocity and its gradient [28] U U, %I \/ uu,Uu aUl gg"
J
qgs Ratio of convection to production of TKE U, jf lu’ ju . jkl
q9 Ratio of total to normal Reynolds stresses u:u', il k
q10 Streamline curvature | | where I' = U/|U|, LL

Ds = |U|Dt

(Wang,Wu, Xiao, PRF 2017)



Test Case 3: Flat Plate Boundary Layer

“ Flow to be predicted: Ma=8, Tw=0.53

X Flows in the database°
Ma=6.0, Tw=0.25 [cold wall] Only the Ma=2.5 case
- ., .‘l 0 is used for training
Ma—6.0, Tw=0.76 —

Wall temperature Tw normalized by recovery temperature Tr:
T, = Too(14+ 0.9 % 22 M2)

Recycling
plane >

t Wall Temperature

39.75,

» Mach # .



Turbulent Kinetic Energy

——- ML Predicted == DNS  -=-- RANS
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Realizability Map

——- ML Predicted - DNS  --- RANS

SR T

Machine

Learning
2-Comp C,

20.0 295 300 30
xz/d;  0.05R,, /1, +x/

28.5

+ Qutside the boundary layer, the Reynolds stress
anisotropy does not have physical significance.
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Turbulent Shear Stress
+ Training: Ma=2.5, Tw=1.0

——- ML Predicted - DNS - RANS
1.4}
1.2t i
i s i 1 :
f j !
1.or 4 i K A bi
ih ih th ] £
i : :
< 0.8 I} g fii } fi|
~_ I | o £ iy
=) ,.’" | | :: | ‘.'l I E" I
I I ) ] ! o
0.6 {i o E s
i . ,5,,-' | i g
0.4 ¢ SN AR AN I
1 | | E 4 | ] [
[ | | 5 | | I" |
0.2} i ! SR I | B | B
R | o I i
<, | | "‘ | "“. | L“ |
= i Rl gt Ol

00 “285  29.0 295 300 305 310
z/6;  0.2R,, /7, +x/0

Prediction; Ma=8, Tw=0.53

40



