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A Scenario for RANS-Based Design/Optimization
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Calibration Cases  
(offline data) Prediction Cases (no data)

Similar configuration with  
different:

• Twist

• Sweep angles

• Airfoil shape

A few configuration with 
data (DNS or experimental 
measurements)

How to leverage data to 
complement RANS models?

machine learning?



Machine Learning is an Umbrella Term

1. pose a function mapping 
from input q to output y, 
controlled by parameters W 

2. fit (learn) the mapping to 
training data by optimizing 
the parameters W 

3. predict y for unseen inputs
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(Supervised) machine learning in a nutshell:

q 7! y
W

qML can handle high-dimensional input space.

y

?
q'

Why do you expect a functional mapping  
between q and y?



What can be corrected in RANS Simulations?

❖ Model coefficients

❖ Unclosed terms in the transport equations (Duraisamy)

❖ RANS-predicted eddy viscosity

❖ RANS predicted Reynolds stress
5

RANS Equation
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❖ Barycentric triangle (realizability 
map) provides a bound of all 
realizable Reynolds stresses.
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Representation of Reynolds Stress Discrepancies

constrain the uncertainty space through a physics-based parameterization [15,16]:
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where k is the TKE; a is the anisotropy tensor; V = [v1, v2, v3] and ⇤ = diag[�1,�2,�3] are its
orthonormal eigenvectors and eigenvalues, respectively, with �1 + �2 + �3 = 0. The decomposition
transforms the Reynolds stress to a space represented by six variables with clear physical inter-
pretations: k is the amplitude of ⌧ij ; �1, �2 indicate its shape; and v1, v2, v3 are its orientation.
Physically realizability of ⌧ij is ensured by constraining all perturbed Reynolds stresses such that k
is positive and that appropriate transformation of �1 and �2 reside within the Lumley triangle [17]
or Baycentric triangle [18] shown in Fig. 1.

(a) (b)

Figure 1: Physics-based prior for modeled Reynolds stress ⌧ (x). (a) The Lumley triangle [19] provides a
guide to ensure physical realizability of the prior for ⌧ . (b) Baycentric triangle [18] provides similar physical
realizability map but is more convenient for interpretation and implementation as the coordinates is a linear
combination or �1 and �2.

Jinlong: can you change the edge colors in the Lumley triangle, so that they correspond to the
Baycentric triangle? Also, the PS/AE/AC figures are blurred. I remember you have a better
version in your “turbulence modeling” project proposal. Please use those instead.

2.1.3 Smooth spatial distribution of Reynolds stress tensors

The Reynolds stress uncertainties at each cell can be di↵erent. A naiver parameterization of
the spatial distribution can lead to a large number of degrees of freedom (DOFs) that can be
prohibitively expensive for the inversion. However, physically the modeling errors of ⌧ can vary in
di↵erent regions of the flow but should be smooth in general. Length scale of this variation should
roughly correspond to that of the turbulence itself [20]. The smoothness allows us to parameterize
the distribution using appropriate basis sets such as the eigenfunctions of the covariance function as
in the Karhunen–Loeve (KL) expansion [21], orthogonal polynomials [22,23], wavelets [24], or radial
basis functions (RBF) [25]. The optimal choice of basis set depends on the specific characteristics
(e.g., smoothness, locality of support) of the prior. For example, one can model the perturbation

4

[Iaccarino et al.]

❖ You can perturb Reynolds stress τrans to stress τ* by 
changing the size, aspect ratio, and orientation:  
preserve realizability & orthogonality

❖ Use ML to learn the perturbations needed to 
transform τrans  to τ*!

“physics-informed”
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Construction of Feature Space

❖ Invariants of 4 tensors/vectors: strain rate (S), rotation 
rate (Ω), pressure (p) gradient, TKE (k) gradient: draw 
4 scalars: streamline curvature (κ), wall-distance based 
Reynolds number (Red), turbulent time scale

❖ (Normalized) feature vector q has a length of ~50.

❖ Choice of features inspired by advanced 
turbulence models.
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Construction of Features Based on Integrity Basis

Xiao et al.

July 16, 2016

1 Minimum Bases

We choose the following set of tensors, vectors, and scalars as a minimum bases:

Tensors/vectors fully represented: {S,⌦,rp,rk} (1)

Scalars: {Re

d

,P/",, k/"} (2)

Vectors partial represented: {U} (3)

{S,⌦,rp,rk,Re

d

,P/", k/",} (4)

• U : mean flow velocity.

• S
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is the rate of strain tensor.

• ⌦
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⌘
is the rate of rotation tensor.

• rp is the pressure gradient.

• rk is the gradient of turbulent kinetic energy.

• Re

d

=

p
kd/⌫ is the wall distance based Reynolds number.

• P/" indicates the ratio of turbulence production and dissipation.

• k/" indicates the turbulent time scale.

• : mean flow streamline curvature.

1

4 tensors/vectors; 47 invariants (integrity bases)

(Ling et al. JCP 2017; Wang et al. CTR Proceeding 2017)

Objective: train discrepancy functions�⌧ (q)



Non-Dimensionalization of Inputs
Table 1: Non-dimensional raw mean flow variables used to construct the invariant basis. The normalized

feature ↵̂ is obtained by normalizing the corresponding raw input ↵ with normalization factor � according

to ↵̂ = ↵/(|↵| + |�|). Notations are as follows: U is mean velocity vector, k is turbulence kinetic energy

(TKE), ⇢ is fluid density, " is the turbulence dissipation rate, S is the strain rate tensor, ⌦ is the rotation

rate tensor, k · k indicate matrix norm.

Normalized

raw input ↵̂
description raw input ↵ normalization factor �

Ŝ

strain rate

tensor
S

"

k

⌦̂

rotation rate

tensor
⌦ k⌦k

crp
Pressure

gradient
rp ⇢kU ·rUk

crk
Gradient of

TKE
rk

"p
k

detail table of the integrity bases of invariants are shown in Table A.4. It has been proved93

in the work by Spencer [? ] that the constructed 47 invariants consists of the minimal set of94

invariants that can represents all the polynomial invariants associated with the tensorial set95

Q̂ under rotation or reflection. To further supplement the mean flow features, three selected96

features in Table 2 are chosen from the work by Wang et al. [? ]. For example, q1 is an97

important indicator to inform the wall distance to the machine-learning-assisted turbulence98

modeling, leading to a data-driven wall model as a counterpart of the traditional wall models.99

On the other hand, the features q2 and q3 carry the information with regard to the velocity100

scale and the time scale of the turbulence, serving as supplements of the mean flow tensors101

Q̂. In conclude, a total mean flow features space of 50 invariants (collectively denoted as q)102

is constructed as machine learning inputs.103

2.3. Representation of Reynolds stress discrepancy as machine learning outputs104

In the PIML framework by Wang et al. [], they follows the work of Iaccarino and co-105

worker [? ] and formulates the Reynolds stress discrepancies as six physically interpretable106

components (i.e., magnitude, shape, and orientation) of based on eigen-decomposition of107

anisotropic Reynolds stress tensor.108
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5

(Wang et al, CTR Proceeding 2017;  Wu and Xiao, In preparation)



Machine Learning Techniques
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(a) periodic hill (prediction)

(b) curved step (training)

FIG. 1: (a) The flow over periodic hills at
Re = 10595 (prediction case), and (b) the flow over

a curved backward-facing step at Re = 13200
(training case). Another scenario is considered with
the flow over periodic hills at Re = 5600 used as

the training case.

FIG. 2: Barycentric triangle used to indicate the
dimensionality of the turbulence state. Typical

mapped locations of near wall turbulence states are
indicated. Typical RANS predicted spatial

variation from the wall to the outer layer as well as
the truth are indicated with arrows.

(a) feature space stratification

(b) regression tree

FIG. 3: Schematic of a simple regression tree in a
two-dimensional feature space (pressure gradient
along streamline dp/ds and wall-distance based

Reynolds number Re
d

), showing (a) the
stratification of feature space and (b) the

corresponding regression tree built from the
training data. The response is the discrepancy �⌘
in the Barycentric triangle of the RANS predicted
Reynolds stress. When predicting the discrepancy
for a given feature vector q̃, the tree model in (b) is
traversed to identify the leaf, and the mean of the
training data is taken as the prediction �⌘(q̃).

6

training with 
machine learning 

algorithms

prediction with
ML-assisted 
RANS simulation

separated flows

attached boundary layers

(a) training: high-fidelity
data of elementary flows

free shear flows

(c) prediction: 
complex, realistic flows

(b) trained discrepancy 
functions

(e.g., random forests, 
or neural network)

data: features q
responses corrections        to 

RANS Reynolds stress

query: feature q'

other flow categories ... ...

q'Tree T

q'

S1 S2 S3

BL1 BL2
BL3

FS1 FS2 FS3

Random 
Forest

Decision 
Tree

Neural  
Networks

q 7! y
W
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Summary of Current Progress

Training

Training

Prediction

Separated Flows:

−1 0 1
−1

0

1

Re
b
=2200

z

y Training 
Re=2200

−1 0 1
−1

0

1

Re
b
=3500

z

y Prediction  
Re=3500

Square Duct Flows:

Figure 1. Computational domain and simulation setup for DNS of a Mach 6 turbulent boundary
layer (Case M6Tw076).14 The reference length �

i

is the thickness of the boundary layer (based on
99% of the freestream velocity) at the inlet plane. An instantaneous flow is shown in the domain,
visualized by iso-surface of the magnitude of density gradient, |�⇢|�

i

/⇢

1

= 0.9825, colored by the
streamwise velocity component (with levels from 0 to U

1

, blue to red).

B. Baseline RANS of High-Speed Turbulent Boundary Layers

For RANS simulations of high-speed turbulent boundary layers, the Reynolds-averaged Navier Stokes equa-
tions are solved using ANSYS Fluent (V15.0)15 with the shear-stress transport (SST) k�! model of Menter.16

The SST based k�! model di↵ers from the standard k�! models in that it undergoes a gradual transition
to the k� ✏ model in the outer part of the boundary layer. No low-Reynolds correction is used as the k� !
based model can be directly integrated from the wall.

Figure 2 shows a schematic of RANS computational domain under the condition of Case M6Tw076
along with the boundary conditions setup in the Fluent solver. Grid points of 561 ⇥ 150 are used in the
streamwise and wall-normal directions. The streamwise and wall-normal domain sizes are approximately
L
x

/�
r

⇥ L
y

/�
r

= 180 ⇥ 80, respectively, where �
r

is approximately the boundary-layer thickness at the
center of the domain. Uniform grids are used in the streamwise direction with a resolution of �x/�

r

⇡ 0.3.
Geometric grids with a stretching ratio of less than 1.05 are used in the wall-normal direction. The wall-
normal grid resolution is �y+ ⇡ 0.8 at the wall and �y+ ⇡ 20 near the boundary-layer edge . Systematic
grid refinement in each direction has been conducted to verify the grid convergence of the RANS results
(Figure 3). The computational setup for RANS of other cases parallels that of the Case M6Tw076.

C. Physics-informed Machine Learning Approach

In this section, the physics-informed ML approach by Wang et al9 is briefly summarized. The general idea
of the ML approach is that given a set of training flows with data, the functional form of the discrepancy in
the Reynolds stress modeled by RANS can be learned in the mean flow feature space. Based on the learned
regression function of Reynolds stress discrepancy, a new flow with a di↵erent configuration or a di↵erent flow
condition can be predicted. The mean flow features q as regression inputs are constructed by raw mean flow
quantities such as pressure P , mean velocity U , fluid density ⇢, and rate of strain tensor S. The complete
list of mean flow features for incompressible flows can be found in Wang et al.9,17 As the response of the
regression, the discrepancy �⌧ of Reynolds stress is in its physical projections but not in its components.
To obtain the physically meaningful projections of Reynolds stress, the following eigen-decomposition is
performed:

⌧ = 2k

✓
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3
I+A
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= 2k

✓
1

3
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◆
. (1)
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American Institute of Aeronautics and Astronautics

Training:  
Ma = 2.5

Prediction:  
Ma=8

High-Mach 
Flat Plate BL:
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Prediction  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Training 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Test Case I: Turbulent Flows in Square Duct

DNS data from (Uhlman et al. 2010 JFM)
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ML-Assisted 
Prediction
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Velocity 

Prediction w/  
ML Corrected  

Reynolds Stresses

(Launder-Gibson  
RSTM)
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Test Case 2: Flows with Massive Separations

backward facing step

wavy channel

curved backward facing step

Periodic hill  
Re=10595

Prediction

Source: http://turbmodels.larc.nasa.gov/
other_dns.html

converging-diverging channel

Training flows Train discrepancy  
function �⌧ (q)

http://turbmodels.larc.nasa.gov/other_dns.html
http://turbmodels.larc.nasa.gov/other_dns.html
http://turbmodels.larc.nasa.gov/other_dns.html


15

Predicted TKE and 
turbulent shear stress for 
Periodic Hill Re=10595

Blue:  
RANS

Red:  
Prediction

Black:  
LES (truth)

RANS Benchmark RF Prediction

FIG. 5: Profiles of the turbulent kinetic energy k
(top row) and turbulent shear stress ⌧

xy

(bottom
row) at x/H = 2 (left column) and x/H = 4 (right
column), which are reconstructed from the random

forest (RF) predictions of the respective
discrepancies and the baseline RANS simulations.

The curved backward-facing step is used as
training case.

7

TKETKE

shear  
stress

shear  
stress

(Wang,Wu & Xiao, PRF 2017)

Reynolds stress improved;  
but what about  
the mean velocities?



Is Reynolds stress 
the right choice 

as the output of machine learning?

❖ Reynolds stress models are unstable

❖ No implicit treatment possible here in data-driven 
modeling.

16



A Priori Studies:
Propagating DNS Reynolds 
Stresses to Mean Velocities

2. Conditioning metric for turbulence models

Consider the steady Reynolds-averaged Navier–Stokes equations for incompressible, constant den-

sity fluids:

u ·ru� ⌫r2

u+rp�r · ⌧ = 0 (3)

r · u = 0 (4)

where u is the mean flow velocity; p is the pressure normalized by the constant density of the

fluid; ⌧ is the Reynolds stress tensor, which needs to be modeled. For simplicity we first consider

a Reynolds-stress-based model where ⌧ is obtained by solving a transport equation in a segregated

manner with the RANS equations) or by a data-driven function (see e.g. [6]). The objective is

to investigate the sensitivity of the obtained mean velocity with respective to perturbations in

the Reynolds stress. Extension of the sensitivity analysis to eddy viscosity model is presented in

Section 3.2.

The RANS momentum equation above can be written more concisely as

N (u) = r · ⌧ (5)

As is usually done in projection based solvers, the convection term is first linearized around the

current velocity u

0 and then discretized to obtain a linear system of the following form:

A U = [b] (6)

where we denoted U = [u] and b = r · ⌧ �rp is the imbalance between the two forces, pressure

gradient and Reynolds stress divergence, which are discretized explicitly; U = [u] is the discretized

velocity field to be solved for. Both [b] and [u] are n⇥ 1 vectors, where n is the number of cells or

grid points in the mesh. The matrix A with dimension n⇥n results from the implicit discretization

of the linearized convection term and the molecular di↵usion term.

8

Use Reynolds stresses from DNS

No model can give a better Reynolds stress than 
DNS data (EVM, algebraic/differential RSM or data-
driven model).



Velocity Propagated from DNS Reynolds Stress
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(a) Reynolds-stress-based model (b) Hybrid model

Figure 3: The comparison of secondary flow velocity U
z

by using (a) Reynolds-stress-based model and (b)

hybrid model. The results by using eddy-viscosity-based model captures no secondary flow and are thus

omitted here.

the flow with massive separation. Figure 4 shows that the convergence is not achieved by224

using Reynolds-stress-based models for the flow over periodic hills. It should be noted that225

the propagated velocity shown in Fig. 4 is obtained by using DNS Reynolds stress, instead226

of the modeled Reynolds stress. Therefore, the unsatisfactory results in Fig. 4 indicates the227

best possible performance of machine-learning-assisted turbulence modeling via Reynolds-228

stress-based approaches.

DNS Propagation

Figure 4: The solved mean velocity field for the flow over periodic hills at Re = 5600. Reynolds-stress-

based model is applied and the DNS data is utilized as the modeled term to evaluate the best performance

of Reynolds-stress-based model.

229

Figure 5(a) shows that better convergence of mean velocity can be achieved by using230

14

❖ DNS data from (Breuer et al., 2009).  Validated with 
new simulations by Laizet et al. (Imperial college)

❖ We proposed a concept of “condition number for 
turbulence models”. Manuscript in preparation 
(Wu et al. 2017).

DNS velocities vs. propagated velocities



Propagated Velocity from DNS Eddy Viscosity
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eddy-viscosity-based models, instead of Reynolds-stress-based models. However, noticeable231

di↵erence can be observed between the solved mean velocity and the DNS data. The main232

reason is that the misalignment between the Reynolds stress tensor and the strain rate tensor233

is neglected by using eddy-viscosity-based models. Such misalignment can be quantified by234

the rotation matrix R from the eigenvectors of Reynolds stress tensor to the ones of strain235

rate tensor. Figure 5(b) presents an indicator of misalignment calculated based on the236

deviation of the rotation matrix R from the identity matrix RI.

DNS Propagation

(a) mean velocity U

(b) residual indicator

Figure 5: The solved mean velocity field is shown in panel (a) for the flow over periodic hills at Re = 5600.

Eddy-viscosity-based model is applied and the DNS data is utilized as the modeled term to evaluate the

best performance. Panel (b) shows an indicator of the deficiency of eddy-viscosity-based model due to the

misalignment of eigenvectors between Reynolds stress tensor and strain rate tensor.

237

Unlike the eddy-viscosity-based models, the hybrid models take into account the di↵er-238

ence between the eddy-viscosity-based Reynolds stress ⌧LS and the true Reynolds stress ⌧ .239

The purpose is to address the misalignment of eigenvectors between Reynolds stress tensor240

15

⌫LS
t =

⌧ : S� 2
3kI : S

S : S

An “optimal” eddy viscosity field (in a least square 
sense) is obtained from DNS Reynolds stresses:



Combining Reynolds Stress and Eddy Viscosity
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and strain rate tensor. It can be seen in Fig. 6 that the solved mean velocity field has a241

much better agreement with DNS data, compared with the results by using the Reynolds-242

stress-based models in Fig. 4 and the eddy-viscosity-based models in Fig. 5. By using DNS243

Reynolds stress data as the ideal machine-learning-modeled stress, the a priori test results244

in Fig. 4 to Fig. 6 demonstrate the superiority of hybrid models in achieving predicative245

capability of mean velocity field.

DNS Propagation

Figure 6: The solved mean velocity field for the flow over periodic hills at Re = 5600. Hybrid model is

applied and the DNS data is utilized as the modeled term to evaluate the best performance.

246

3.3. A posteriori test247

3.3.1. Flow in a square duct248

In the first scenario, the random forest is trained by using the flow in a square duct at249

Reynolds number Re = 2200. The flow at Reynolds number Re = 3500 is used as the test250

flow. It should be noted that the DNS data at Re = 3500 is only used to evaluate the251

machine learning prediction, instead of being used in training the machine learning model.252

It can be seen in Fig. 7 that the RSTM simulated normal components of Reynolds stress253

captures the imbalance between ⌧
yy

and ⌧
zz

. However, the RSTM simulated normal stress254

imbalance is noticeably greater than the the DNS data, especially around the near wall region.255

Such greater normal stress imbalance between ⌧
yy

and ⌧
zz

explains the stronger secondary256

flow of RSTM simulation. Compared with the RSTM simulated stress components, the257

machine-learning-predicted normal stress components ⌧
yy

and ⌧
zz

demonstrate a much better258

agreement with the DNS data in Fig. 7.259

16

Obtaining the eddy viscosity and non-linear component 
separately: 

⌧ = ⌫LS
t S+ ⌧?

Implicit Explicit



Take the Lessons Learned in 
A Priori Studies to

Machine-Learning-Assisted 
Turbulence Modeling



Turbulence Database In the Age of 
Data-Driven Modeling

• Wanted: DNS, LES, or experimental data on flows 
with parameterized configurations (geometry, Re, 
Ma, AoA). 

• We need mean velocities & Reynolds stress fields, 
possibly at sparse yet representative locations

Baseline
Geometry

Increasing hill steepness



A Less Ambitious Endeavor:  
Training & Prediction Flows Are Very Similar

23

general flow direction

recirculation zone

general flow direction

recirculation zone
training

prediction

80% the width of  
the baseline hill



Learning Both Reynolds Stress & Eddy Viscosity
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0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

RANS DNS PIML

Figure 15: The stream-wise velocity predicted by hybrid PIML at x/H = 1, 2, ..., 8. The test flow is the flow

over periodic hill at Re = 5600. The training flow is at the same Reynolds number but has a steeper hill

profile as shown in Fig. 2.

to the sensitivity of mean velocity with regard to the errors in the prediction of Reynolds363

stress. In this work we propose an improved PIML framework to model Reynolds stress364

by using machine learning techniques. In addition to the DNS Reynolds stress tensor, the365

least squares eddy viscosity and stress tensor are both predicted. This achieves more stable366

simulations when plugging the machine learning predictions into RANS equations and solv-367

ing for mean velocity field. In the proposed framework, a systematic way is also provided368

to generate mean flow features as machine learning inputs. Three training-prediction sce-369

narios are investigated to demonstrate the predictive capability of the proposed framework.370

Specifically, a machine learning model is trained on the flow in a square duct at Reynolds371

number Re = 2200, and the flows in a square duct at Reynolds numbers Re = 3500 and372

Re = 1.25 ⇥ 105 are predicted. In addition, another machine learning model is trained on373

the flow over periodic hills at Reynolds number Re = 5600, and the flow with a steeper hill374

profile at the same Reynolds number is predicted. The satisfactory prediction performance375

of mean velocity field demonstrates the predictive capability of the proposed framework for376

machine-learning-assisted turbulence modeling. In the second training-prediction scenario,377

machine-learning-trained model successfully predicts the mean flow pattern that is not even378

shown in the training flow. It provides a strong evidence that machine-learning-assisted tur-379

bulence modeling can reveal flow physics from the existing data, instead of merely fitting on380
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(Realistic) Vision in RANS-based 
Geometry Optimization

❖ Proposed a distance metric. (Wu et al. FTaC 2017)

❖ Typical configurations: flow over bumps, airfoils, wing-
body junctures, blade tip clearance.
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(“Fantasy”) Vision: Leverage Data from 
Elementary Flows to Predict Complex Flows
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Training: data from elementary flows
Prediction: 
Industrial flows

Some figures adopted from Ling et al. POF 2015; 
www.turbostream-cfd.com; youtube.com

085103-5 J. Ling and J. Templeton Phys. Fluids 27, 085103 (2015)

FIG. 1. Schematics of each case in the database showing contours of normalized velocity magnitude as predicted by RANS.
The velocity magnitude is normalized by the bulk velocity in cases 1, 4, and 5, by the free stream velocity in cases 2 and 7,
and by the average jet velocity in cases 3 and 6.

error. The di↵erence between the training and validation error is an indicator of the degree of
over-fitting occurring. This plot shows that as the number of data sets used for training increases,
the training error increases slightly and the validation error decreases significantly. Nevertheless, the
training error remains below the validation error, even when six cases are used for training, indicat-
ing that some over-fitting is still occurring. Therefore, the classifier performance would benefit from
a larger training database.

III. MACHINE LEARNING ALGORITHMS

Machine learning encompasses a variety of data-driven methods that include classifiers, regres-
sors, and clustering algorithms. Supervised machine learning algorithms use a set of labeled training
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Addressing Dr. Menter’s concerns on ML: 

❖ Data-driven models are constructed as “add-on” 
(patch) for traditional models, by developers.

❖ The database and the machine learning are built into 
the model; not constructed by the users.



Traditional vs. Data-Driven Turbulence 
Modeling: A Unified Perspective

28

❖ Not just buzzword-chasing.
❖ Machine-learning-assisted turbulence modeling, as 

we are pursuing, is serious turbulence modeling.
❖ All constraints in conventional turbulence 

modeling must be equally respected (see Spalart 
2015: Philosophies and fallacies in turbulence 
modeling. Progress in Aerospace Sciences) :
• Objectivity and frame independence (e.g., can’t 

use velocity or pressure as input)
• Realizability of Reynolds stress
• Non-dimensionization and invariance set



Summary and Open Questions
❖ Proposed a Physics-Informed Machine Learning 

(PIML) to correct/improve existing turbulence 
models.

❖ Learn discrepancies of RANS modeled Reynolds 
stresses (with stabilization)!

❖ Preliminary success in scenarios where training and 
prediction flows are similar.

What is the limit of data-driven modeling? How 
different can the training/predictions flows be?

Is a (weakly) universal data-driven turbulence modeling 
possible or valuable?

Open Questions:



❖ J.-X. Wang, J.-L. Wu, and H. Xiao.  A Physics Informed Machine 
Learning Approach for Reconstructing Reynolds Stress Modeling 
Discrepancies Based on DNS Data. Physical Review Fluids,  2(3), 
034603, 1-22,2017.

❖ J.-L. Wu, J.-X. Wang, H. Xiao, J. Ling. A Priori Assessment of Prediction 
Confidence in Data-Driven Turbulence Modeling. Flow, Turbulence 
and Combustion, 99(1), 25-46, 2017.

❖ J.-L. Wu, R. Sun, H. Xiao, Q. Wang. On the conditioning of turbulence 
models. In preparation.
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Related Papers

https://sites.google.com/a/vt.edu/hengxiao/ 

https://sites.google.com/a/vt.edu/hengxiao/


Thank you!



(a) Reynolds stress ⌧
xy

(Re = 180) (b) Reynolds stress ⌧
xy

(Re = 5200)

(c) Mean velocity U (Re = 180) (d) Mean velocity U (Re = 5200)

Figure 1: The comparison of Reynolds stress and the corresponding mean velocity by solving RANS

equations, including (a) Reynolds stress ⌧
xy

at Re = 180, (b) Reynolds stress ⌧
xy

at

Re = 5200, (c) mean velocity U at Re = 180 and (d) mean velocity U at Re = 5200.
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(Thompson et al. 2016 C&F; Poroseva et. al. POF 2017;  Wu et al. Under preparation.)

Table 1: Summary of the results in the channel flow test.

Reynolds number Re
⌧

180 550 1000 2000 5200

average Reynolds stress deviation �⌧
yx

/⌧
yx

0.17% 0.21% 0.03% 0.15% 0.31%

maximum Reynolds stress deviation max(�⌧
yx

)/⌧
yx

0.43% 0.38% 0.07% 0.23% 0.41%

average velocity deviation �U
x

/U
x

0.25% 1.61% 0.17% 2.85% 21.6%

maximum velocity deviation max(�U
x

)/U
x

0.36% 2.70% 0.25% 5.48% 35.1%

Table 2: Summary of the results in the channel flow test.

Frictional Reynolds number (Re
⌧

) 180 550 1000 2000 5200

Errors in Reynolds stresses, averaged 0.17% 0.21% 0.03% 0.15% 0.31%

maximum 0.43% 0.38% 0.07% 0.23% 0.41%

Errors in mean velocities, averaged 0.25% 1.61% 0.17% 2.85% 21.6%

maximum 0.36% 2.70% 0.25% 5.48% 35.1%

6
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is a measure of sensitivity of U
j

, the j-th element of the discretized n-vector [u], with respect to

Reynolds stress perturbations. Each element in the n-vector corresponds to a cell in the CFD mesh

and a specific location in the physical domain. As such, [K]
j

is called “local condition number” and

[K] the “condition number field”. We use the terminology to indicate the fact that the sensitivity

is measure of the velocity at a particular location with respect to perturbation of, e.g., Reynolds

stresses. In order to avoid potential confusion with the “components” of the velocity vector, the

term “component-wise” is not used.

|�U
j

|
U1

 kr
j

k kr · ⌧k
U1| {z }
[K]

j

kr · �⌧k
kr · ⌧k . (15)

Compared to the norm-based conditional number, the conditional number field has the following

advantages:

1. It is a more refined metric as it measures the sensitivity of solution (velocity) at specific

locations.

2. It is mesh independent when the mesh is fine enough, although the norms kr
j

k and kr · ⌧k are

both mesh-dependent. This apparent paradox is resolved by considering the scenario when

the mesh is infinitely fine: K(x) is a conditional number field that measures the condition of

the operator N in Eq. (35). It is a property of a continuous operator.

Further discuss the mesh in-dependence of K
j

, support with numerical results and, ideally, the-

oretical proof.

More importantly, it can adequately explain the increasing sensitivity of velocities with respective

to Reynolds stress perturbations as observed by Thompson et al [12] and Poroseva et al. [9]. It also

verifies that eddy-viscosity turbulence models are more well-conditioned than Reynolds-stress-based

models. This will be demonstrated with numerical results in Section 3.
Add discussions of mesh dependence of the new metric.

2.3. Condition number for eddy viscosity models

Most commonly used model are eddy viscosity models. We will extend the analysis above for

Reynolds stress models to eddy viscosity models by using the linear eddy viscosity model as example,

14

Error in  
Reynolds 
Stresses

Condition 
number

Error in  
mean 

velocity

rj is the jth row of matrix inv(A)  
in discretized RANS equation:

2. Conditioning metric for turbulence models

Consider the steady Reynolds-averaged Navier–Stokes equations for incompressible, constant den-

sity fluids:

u ·ru� ⌫r2

u+rp�r · ⌧ = 0 (3)

r · u = 0 (4)

where u is the mean flow velocity; p is the pressure normalized by the constant density of the

fluid; ⌧ is the Reynolds stress tensor, which needs to be modeled. For simplicity we first consider

a Reynolds-stress-based model where ⌧ is obtained by solving a transport equation in a segregated

manner with the RANS equations) or by a data-driven function (see e.g. [6]). The objective is

to investigate the sensitivity of the obtained mean velocity with respective to perturbations in

the Reynolds stress. Extension of the sensitivity analysis to eddy viscosity model is presented in

Section 3.2.

The RANS momentum equation above can be written more concisely as

N (u) = r · ⌧ (5)

As is usually done in projection based solvers, the convection term is first linearized around the

current velocity u

0 and then discretized to obtain a linear system of the following form:

A U = [b] (6)

where we denoted U = [u] and b = r · ⌧ �rp is the imbalance between the two forces, pressure

gradient and Reynolds stress divergence, which are discretized explicitly; U = [u] is the discretized

velocity field to be solved for. Both [b] and [u] are n⇥ 1 vectors, where n is the number of cells or

grid points in the mesh. The matrix A with dimension n⇥n results from the implicit discretization

of the linearized convection term and the molecular di↵usion term.

8

Reτ=180

5200

(Wu et al. Under preparation)



Derivation of Local Condition Number

34

(a) (b)

Figure 4: Force balance of the plane channel flow in (a) the outer region and (b) the viscous wall

region.

is to measure the conditioning property of a class of turbulence models at the PDE level, not

associated with any particular numerical discretization thereof. These observations clearly call for

a alternative metric for measuring the conditioning property of turbulence models.

2.2. Local condition number for turbulence models

The matrix norm-based condition number K
⌧

derived in Eq. 11 provides an upper bound on the

overall velocity sensitivity measured by k�uk
kuk at a given level of Reynolds stress perturbations.

However, the condition number K
⌧

clearly has several drawbacks: (1) mesh dependence, (2) failure

to explain the increased sensitivity with increasing Reynolds numbers observed in channel flows,

and (3) the lack of precision in indicating the exact regions where the velocities are more sensitive.

To address these shortcomings, we formulate a local condition number by adapting the concept

of “componentwise condition number” proposed by Chandrasekaran and Ipsen [3]. We pursue an

upper bound on the error of the velocity at a given location, or equivalently, an upper bound of

error in a given k-th element, [u]
j

, of discretized velocity vector. The procedure follows that of [3].

Since [u] = A�1[b], if [r
j

]T denotes the j-th row of matrix A�1, then [u]
j

= [r
j

]T [b] and �[u]
j

=

[r
j

][�b]. Using �b = r · �⌧ from Eq. (9), we have

|�U
j

|
U1

 kr
j

k k�bk
U1

=
kr

j

k kr · �⌧k
U1

=
kr

j

k kr · ⌧k
U1| {z }
[K]

j

kr · �⌧k
kr · ⌧k . (13)

where k · k indicate vector norm and is a shorthand notation of k[·]k, and | · | indicates absolute

value of a scalar; U1 is a representative velocity scale for normalization; for example, in the plane

channel flows, U1 is chosen as the velocity at the channel center. The vector (or equivalently a

12



Non-dimensionalization of featuresTable 1: Non-dimensional raw mean flow variables used to construct the invariant basis. The normalized

feature ↵̂ is obtained by normalizing the corresponding raw input ↵ with normalization factor � according

to ↵̂ = ↵/(|↵| + |�|). Notations are as follows: U is mean velocity vector, k is turbulence kinetic energy

(TKE), ⇢ is fluid density, " is the turbulence dissipation rate, S is the strain rate tensor, ⌦ is the rotation

rate tensor, k · k indicate matrix norm.

Normalized

raw input ↵̂
description raw input ↵ normalization factor �

Ŝ

strain rate

tensor
S

"

k

⌦̂

rotation rate

tensor
⌦ k⌦k

crp
Pressure

gradient
rp ⇢kU ·rUk

crk
Gradient of

TKE
rk

"p
k

detail table of the integrity bases of invariants are shown in Table A.4. It has been proved93

in the work by Spencer [? ] that the constructed 47 invariants consists of the minimal set of94

invariants that can represents all the polynomial invariants associated with the tensorial set95

Q̂ under rotation or reflection. To further supplement the mean flow features, three selected96

features in Table 2 are chosen from the work by Wang et al. [? ]. For example, q1 is an97

important indicator to inform the wall distance to the machine-learning-assisted turbulence98

modeling, leading to a data-driven wall model as a counterpart of the traditional wall models.99

On the other hand, the features q2 and q3 carry the information with regard to the velocity100

scale and the time scale of the turbulence, serving as supplements of the mean flow tensors101

Q̂. In conclude, a total mean flow features space of 50 invariants (collectively denoted as q)102

is constructed as machine learning inputs.103

2.3. Representation of Reynolds stress discrepancy as machine learning outputs104

In the PIML framework by Wang et al. [], they follows the work of Iaccarino and co-105

worker [? ] and formulates the Reynolds stress discrepancies as six physically interpretable106

components (i.e., magnitude, shape, and orientation) of based on eigen-decomposition of107

anisotropic Reynolds stress tensor.108

⌧ = 2k

✓
1

3
I+ b

◆
= 2k

✓
1

3
I+V⇤VT

◆
(7)

5

(Wu and Xiao, In preparation)



PHYSICS-INFORMED MACHINE LEARNING APPROACH . . .

TABLE I. Nondimensional flow features used as input in the regression. The normalized feature qβ is
obtained by normalizing the corresponding raw features value q̂β with normalization factor q∗

β according to
qβ = q̂β/(|q̂β | + |q∗

β |) except for β = 3. Repeated indices imply summation for indices i, j , k, and l but not for
β. Notations are as follows: Ui is mean velocity, k is turbulent kinetic energy (TKE), u′

i is fluctuation velocity,
ρ is fluid density, ε is the turbulence dissipation rate, S is the strain rate tensor, ! is the rotation rate tensor, ν is
fluid viscosity, d is distance to wall, " is unit tangential velocity vector, D denotes material derivative, and Lc

is the characteristic length scale of the mean flow. ∥ · ∥ and | · | indicate matrix and vector norms, respectively.

Feature Normalization
(qβ ) Description Raw feature (q̂β ) factor (q∗

β )

q1 Ratio of excess rotation rate to strain rate (Q criterion) 1
2 (∥!∥2 − ∥S∥2) ∥S∥2

q2 Turbulence intensity k 1
2 UiUi

q3 Wall-distance based Reynolds number min (
√

kd
50ν

,2) not applicablea

q4 Pressure gradient along streamline Uk
∂P
∂xk

√
∂P
∂xj

∂P
∂xj

UiUi

q5 Ratio of turbulent time scale to mean strain time scale k
ε

1
∥S∥

q6 Cratio of pressure normal stresses to shear stresses
√

∂P
∂xi

∂P
∂xi

1
2 ρ

∂U2
k

∂xk

q7 Nonorthogonality between velocity and its gradient [28] |UiUj
∂Ui

∂xj
|

√
UlUl Ui

∂Ui

∂xj
Uk

∂Uk

∂xj

q8 Ratio of convection to production of TKE Ui
dk
dxi

|u′
j u

′
kSjk|

q9 Ratio of total to normal Reynolds stresses ∥u′
iu

′
j∥ k

q10 Streamline curvature |D"
Ds

| where " ≡ U/|U|, 1
Lc

Ds = |U|Dt

aNormalization is not necessary as the Reynolds number is nondimensional.

and responses are presented in Secs. II C and II D, respectively, and the machine learning algorithm
chosen to build the regression function is introduced in Sec. II E.

C. Choice of mean flow features as regression input

As has been pointed out in Sec. I, mean flow features are better suited as input of the regression
function than physical coordinates as they allow the constructed functions to predict flows in different
geometries. Ling and Templeton [12] proposed a rich set of twelve features based on clear physical
reasoning. The set of features used in the present study mostly follow their work, except that we
excluded the feature “vortex stretching” (input 8 in Table II of Ref. [12]). This feature is present
only in three-dimensional flows, but the test cases presented here are two-dimensional flow. We
excluded two additional features related to linear and nonlinear eddy viscosities (features 6 and
12 in Ref. [12]). These quantities were specifically chosen for evaluating qualitative confidence
indicators of RANS predictions and, in our opinion, are not suitable input for regression functions of
Reynolds discrepancies. Finally, experiences in the turbulence modeling communities suggest that
mean streamline curvature has important influences on the predictive performance of RANS models
[25]. Therefore, curvature is included as an additional feature. The complete list of the mean flow
features chosen as regression inputs in this work is summarized in Table I.

In choosing the mean flow features as regression inputs, we have observed a few principles in
general. First, the input and thus the obtained regression functions should be Galilean invariant.
Quantities that satisfy this requirement include all scalars and the invariants (e.g., norms) of vectors
and tensors. An interesting example is the pressure gradient along streamlines (see feature q4 in
Table I). While neither velocity Uk nor pressure gradient dP/dxk (both being vectors) is Galilean-
invariant by itself and thus is not a suitable input, their inner product Uk

dP
dxk

is. Second, since the truth

034603-5

(Wang,Wu, Xiao, PRF 2017)



Test Case 3: Flat Plate Boundary Layer
❖ Flow to be predicted: Ma=8,  Tw=0.53 
❖ Flows in the database:  

Ma=6.0,      Tw=0.25 [cold wall]  
Ma=2.5,      Tw=1.0     
Ma=6.0,      Tw=0.76

37

Figure 1. Computational domain and simulation setup for DNS of a Mach 6 turbulent boundary
layer (Case M6Tw076).14 The reference length �

i

is the thickness of the boundary layer (based on
99% of the freestream velocity) at the inlet plane. An instantaneous flow is shown in the domain,
visualized by iso-surface of the magnitude of density gradient, |�⇢|�

i

/⇢

1

= 0.9825, colored by the
streamwise velocity component (with levels from 0 to U

1

, blue to red).

B. Baseline RANS of High-Speed Turbulent Boundary Layers

For RANS simulations of high-speed turbulent boundary layers, the Reynolds-averaged Navier Stokes equa-
tions are solved using ANSYS Fluent (V15.0)15 with the shear-stress transport (SST) k�! model of Menter.16

The SST based k�! model di↵ers from the standard k�! models in that it undergoes a gradual transition
to the k� ✏ model in the outer part of the boundary layer. No low-Reynolds correction is used as the k� !
based model can be directly integrated from the wall.

Figure 2 shows a schematic of RANS computational domain under the condition of Case M6Tw076
along with the boundary conditions setup in the Fluent solver. Grid points of 561 ⇥ 150 are used in the
streamwise and wall-normal directions. The streamwise and wall-normal domain sizes are approximately
L
x

/�
r

⇥ L
y

/�
r

= 180 ⇥ 80, respectively, where �
r

is approximately the boundary-layer thickness at the
center of the domain. Uniform grids are used in the streamwise direction with a resolution of �x/�

r

⇡ 0.3.
Geometric grids with a stretching ratio of less than 1.05 are used in the wall-normal direction. The wall-
normal grid resolution is �y+ ⇡ 0.8 at the wall and �y+ ⇡ 20 near the boundary-layer edge . Systematic
grid refinement in each direction has been conducted to verify the grid convergence of the RANS results
(Figure 3). The computational setup for RANS of other cases parallels that of the Case M6Tw076.

C. Physics-informed Machine Learning Approach

In this section, the physics-informed ML approach by Wang et al9 is briefly summarized. The general idea
of the ML approach is that given a set of training flows with data, the functional form of the discrepancy in
the Reynolds stress modeled by RANS can be learned in the mean flow feature space. Based on the learned
regression function of Reynolds stress discrepancy, a new flow with a di↵erent configuration or a di↵erent flow
condition can be predicted. The mean flow features q as regression inputs are constructed by raw mean flow
quantities such as pressure P , mean velocity U , fluid density ⇢, and rate of strain tensor S. The complete
list of mean flow features for incompressible flows can be found in Wang et al.9,17 As the response of the
regression, the discrepancy �⌧ of Reynolds stress is in its physical projections but not in its components.
To obtain the physically meaningful projections of Reynolds stress, the following eigen-decomposition is
performed:

⌧ = 2k

✓
1

3
I+A

◆
= 2k

✓
1

3
I+V⇤VT

◆
. (1)
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In this paper, a physics-informed machine learning approach is applied to improve the
accuracy of the Reynolds stresses modeled by Reynolds-averaged Navier-Stokes (RANS)
for high-speed flat-plate turbulent boundary layers using an existing DNS database. In the
machine-learning technique, the DNS dataset of a Mach 2.5 adiabatic turbulent boundary
layer is used as the training flow to construct the invariant basis for learning the functional
form of the discrepancy in RANS modeled Reynolds stresses. The functional thus con-
structed is in turn used to correct the RANS prediction of Reynolds stresses for turbulent
boundary layers under two cold-wall hypersonic conditions with nominal freestream Mach
numbers of 6 and 8. The study shows that the RANS-modeled Reynolds normal stresses,
the turbulent kinetic energy, and the Reynolds-stress anisotropy can be significantly im-
proved using the machine-learning technique. Such a study lays the foundation towards
better physics-based turbulence modeling for high-Mach-number turbulent flows.

Nomenclature

C
p

heat capacity at constant pressure, J/(K·kg)
C

v

heat capacity at constant volume, J/(K·kg)
H shape factor, H = �⇤/✓, dimensionless
M Mach number, dimensionless
Pr Prandtl number, Pr = 0.71, dimensionless
R ideal gas constant, R = 287, J/(K·kg), or radius of the axisymmetric nozzle, m
Re

✓

Reynolds number based on momentum thickness and freestream viscosity, Re
✓

⌘ ⇢1U1✓

µ1
,

dimensionless
Re

�2 Reynolds number based on momentum thickness and wall viscosity, Re
�2 ⌘ ⇢1U1✓

µw
, dimensionless

Re
⌧

Reynolds number based on shear velocity and wall viscosity, Re
⌧

⌘ ⇢wu⌧�

µw
, dimensionless

rms root mean square
T temperature, K
T
r

recovery temperature, T
r

= T1(1 + 0.9 ⇤ ��1
2 M2

1), K
U1 freestream velocity, m/s
a speed of sound, m/s
p pressure, Pa
q dynamic pressure, Pa
r radial coordinate
u streamwise velocity, m/s
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Wall temperature Tw normalized by recovery temperature Tr:

Only the Ma=2.5 case 
is used for training

Mach #

Wall Temperature



Turbulent Kinetic Energy

38

RANS
DNS

ML

x/� =



Realizability Map

39

DNS
Machine 
Learning

RANS

y/� > 1

❖ Outside the boundary layer, the Reynolds stress 
anisotropy does not have physical significance.



Turbulent Shear Stress
❖ Training: Ma=2.5,    Tw=1.0 

40

Prediction: Ma=8,  Tw=0.53

RANS

DNS

ML

x/� =29


