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Outline

d Flow: spatial separation bubbles
= Extending Spalart & Coleman 97 (Eur J. Mech. B/Fluids 16(2):169-189)

= Five cases: with/without sweep, sudden/gradual pressure gradient (PG), 2X
Reynolds number; larger domain

J Strategy — use DNS data for...
= “Conventional” uses — Test turbulence theory and RANS modeling...

o Concepts (Stratford scaling at C;= O stations)
o Predictions (SA, SST, RSM, ...) of separation/reattachment locations

= “Novel” uses — Diagnose Effective eddy viscosity for...

o Full Reynolds-stress tensor
* RANS model counterparts (check correlation to separation predictions)
* Frozen-field solutions (check constitutive relationships)

o Only wall-parallel components, for cases with sweep
o Explore idea of a different eddy viscosity in the x-z plane than in the y direction

d Summary/Open questions




Flow — Visualization: DNS of PG-induced flat-plate separation bubbles

Q criterion: T
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T~

Red is negative

du/dy
B .

0 30 60 90 120 150

0.05 0.15 0.25 0.35 0.45 0.55 0.65



Flow — Mean: DNS of PG-induced flat-plate separation bubbles...

Case CO (gradual APG, Re=80000):

Mean spanwise vorticity, streamlines: 0.5
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Cases

XAPG
Case arctan ('{%) S/Yioo Vmax/Use  Rolxapg  Nx - Ny - Nz
SC97 0° 1.7 0.435 550 0.03 x 10°
A0 0° 1.7 0.40 1400 0.98 x 10°
BO 0° 5.2 0.13 980 0.98 x 10°
Co 0° 5.2 0.13 2200 4.72 x 10°
A35 35° 1.7 0.40 1350 1.97 x 10°
B35 35° 5.2 0.13 835 1.97 x 10°
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"Conventional” strategy — Part 1 of 2: Test theoretical concepts:
Stratford zero-stress velocity scaling (U~/y)
Profiles at separation and reattachment (all three unswept cases)
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Implication: Prolonged C; = 0 region NOT required! ¢




"Conventional” strategy — Part 2 of 2: Test CFD RANS predictions:
Skin friction profiles/separation & reattachment locations

Using DNS as inflow BC SA
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Findings:
BL: sep too early
. ) . . . As expected, found elsewhere
Solutions via CFL3D, using DNS as inflow BC k-e (Abid): no sep P 2

SA/SST/RSM/etc: somewhat too early and too deep,

and together (why?)...
(Recovery difficult in its own right)
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"Novel” strategy - Effective eddy viscosity
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* Follows from Boussinesq approximation and assumed dependence of eddy viscosity on
TKE production (to give correct mean-to-turbulence energy transfer)

* Corresponds to least-squares fit of Reynolds stress tensor by scalar eddy viscosity

* Available from DNS, convenient RANS-model diagnostic — tool for Machine Learning?

o Full RANS-model solutions (highlight critical regions)
o Models solved in “frozen” DNS fields (check constitutive relationship)
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Case CO0 (087ri
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Freezing DNS - SSG/LRR-RSM-w2012
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Effective eddy viscosity (cont’d)...

Comment: Effective eddy viscosity tends to be higher for frozen-
field solutions than for normal/coupled RANS solutions. Why?...

Question: Why did such large differences in eddy viscosity in
models produce relatively little difference in C{x) predictions?

Near-inviscid behavior in APG region? Common model structure?
TBD...
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Effective Eddy Viscosity in Different Directions

» In the effective eddy viscosity shown earlier, the wall-normal terms dominate: -u'v'and Si,
o The RANS models are made to favor the wall-normal diffusion
» We can define a “lateral” eddy viscosity, possibly quite different from the wall-normal eddy viscosity...
o ..And probably larger! Evidence from wall jets, and turbulent wedges in a laminar BL
» The first idea is to apply the formula, but only to the strain and stresses in the x-z plane
o Recall that in the past, eddy viscosity in a single direction has been defined, e.qg., u'v'/ (dU/dy)
» 2D flows don’t have an “interesting” strain S,, in the x direction...
» But the swept APG flow has a meaningful strain field in the x-z plane, allowing a non-trivial “v,,,” to be defined

Consider APG-induced separation with sweep...

Instantaneous x-wise velocity: (plan view)
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Effective eddy viscosity in wall-parallel plane: i = 1,3 only...
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APG region: eff eddy viscosity, all components APG region: lateral eff eddy viscosity, i = 1,3 only

* Very different behavior of effective wall-parallel eddy viscosity may lead to new modeling ideas
— This eddy viscosity is indeed much larger
— And has strong negative excursion at separation

 We would have a constitutive relation that incorporates the wall-normal vector

* Role for/input to Machine Learning?



Summary/Open questions

* DNS of spatial separation used to address modeling issues, in
conventional and new ways

* New family of cases, with much “bigger data” than in 1997

* Effective-eddy-viscosity “target” from DNS highlights:
* model limitations
* wide variations in eddy viscosity between models (only around separation)

* Correlation between model’s separation prediction and eddy-viscosity
fields not strong —is it a feature of flow or model?

* Proposed “wall-parallel eddy viscosity” exhibits unexpected behavior
* Very preliminary concept

e Paper(s) in preparation, data to be made available soon
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