Appropriate differential Reynolds stress modeling for turbomachinery flows

Christian Morsbach German Aerospace Center (DLR) Institute of Propulsion Technology

Knowledge for Tomorrow

Overview

Overview

Reynolds stress models in TRACE

Model	Author	Comment
SSG/LRR-ω	Eisfeld	Switch between boundary layer and free shear layer
JH-c ^h	Jakirlic & Hanjalic	
JH- ω^h (Maduta)	Maduta & Jakirlic	Near-wall modelling
$JH-\omega^h$	present work	

Pressure-strain models

$$\overline{\rho}\Pi_{ij} = \overline{\rho}\left(\Pi_{ij,1} + \Pi_{ij,2}\right) = p'\left(\frac{\partial u_i''}{\partial x_j} + \frac{\partial u_j''}{\partial x_i}\right)$$

Example: Slow part

Coefficient function in boundary layer

Dissipation rate

$$\frac{D\left(\overline{\rho}\omega^{h}\right)}{Dt} = \frac{\partial}{\partial x_{i}} \left[\left(\frac{1}{2}\mu + \sigma_{\omega}\mu_{T}\right) \frac{\partial\omega^{h}}{\partial x_{i}} \right] + \alpha \frac{\overline{\rho}\omega^{h}}{k} P_{k} - \beta \overline{\rho} \left(\omega^{h}\right)^{2} + \frac{CD_{k\omega}}{CD_{k\omega}} + \frac{1}{C_{\mu}k} P_{\epsilon 3} \right]$$
Diffusion Production Destruction Cross Gradient diffusion production

Model JH-ω^h (Maduta) JH-ω^h SSG/LRR-ω

Dissipation rate

$$\frac{D\left(\overline{\rho}\omega^{h}\right)}{Dt} = \frac{\partial}{\partial x_{i}} \left[\left(\frac{1}{2}\mu + \sigma_{\omega}\mu_{T}\right) \frac{\partial\omega^{h}}{\partial x_{i}} \right] + \alpha \frac{\overline{\rho}\omega^{h}}{k} P_{k} - \beta \overline{\rho} \left(\omega^{h}\right)^{2} + \frac{CD_{k\omega}}{CD_{k\omega}} + \frac{1}{C_{\mu}k} P_{\epsilon 3} \right]$$
Diffusion Production Destruction Cross Gradient diffusion production

Model	CD _{kω}
JH- ω^h (Maduta)	$\frac{2}{k} \left(\frac{1}{2} C_{\rm cr} \mu + \sigma_d \mu_T \right) \frac{\partial \omega^h}{\partial x_i} \frac{\partial k}{\partial x_i}$
$JH-\omega^h$	$\sigma_d \frac{2\overline{\rho}}{\omega^h} \max\left[\frac{\partial \omega^h}{\partial x_i} \frac{\partial k}{\partial x_i}, 0\right]$
SSG/LRR-ω	$\sigma_d \frac{\overline{\rho}}{\omega} \frac{\partial \omega}{\partial x_j} \frac{\partial k}{\partial x_j}$

Dissipation rate

$$\frac{D\left(\overline{\rho}\omega^{h}\right)}{Dt} = \frac{\partial}{\partial x_{i}} \left[\left(\frac{1}{2}\mu + \sigma_{\omega}\mu_{T}\right) \frac{\partial\omega^{h}}{\partial x_{i}} \right] + \alpha \frac{\overline{\rho}\omega^{h}}{k} P_{k} - \beta \overline{\rho} \left(\omega^{h}\right)^{2} + \frac{CD_{k\omega}}{CD_{k\omega}} + \frac{1}{C_{\mu}k} P_{\epsilon 3} \right]$$
Diffusion Production Destruction Cross Gradient diffusion production

Model	CD _{kω}	Formulation $P_{\epsilon 3}$
JH- ω^{h} (Maduta)	$\frac{2}{k} \left(\frac{1}{2} C_{\rm cr} \mu + \sigma_d \mu_T \right) \frac{\partial \omega^h}{\partial x_i} \frac{\partial k}{\partial x_i}$	Simplified
$JH-\omega^h$	$\sigma_d \frac{2\overline{\rho}}{\omega^h} \max\left[\frac{\partial \omega^h}{\partial x_i} \frac{\partial k}{\partial x_i}, 0\right]$	Original
SSG/LRR-ω	$\sigma_d rac{\overline{ ho}}{\omega} rac{\partial \omega}{\partial x_j} rac{\partial k}{\partial x_j}$	-

Overview

Stability analysis

	LRR-ω	JH-ω ^h
A ≠ 0	Stable	Stable

Stability analysis

	LRR-ω	JH-@ ^h
A ≠ 0	Stable	Stable
A = 0	Unstable	All eigenvalues vanish

Numerical analysis of influencing factors

$$Re_T, \quad \frac{\omega}{S}, \quad \Pi_{ij,2}$$

Overview

Virginia Tech Compressor Cascade

Tip gap flow: Reynolds stress tensor

Tip gap flow: velocity vector

RWTH Aachen 1.5-stage cold-air turbine		
Parameter		
M _{in}	0.15	
M _{out}	0.38	
Re _{2th}	330k – 810k	
t/c	0.71 - 0.98	
h/l _{ax}	1.45 – 1.77	
1		

Circumferential averages

Summary

Conclusion

Outlook

Picture: Gary Settles, CC BY-SA 3.0

